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Abstract

In this paper I identify an alternative preference structure that preserves most of
the cherished simplicity of the formulation of the Principal-Agent problem pioneered
by Holmström and Milgrom (1987). The main advantage of my approach is in relation
to the structure of the optimal contract: it adds a convex component to their optimal
linear contract. This provides new opportunities to revisit empirical predictions and
studies based o¤ of their linear formulation and to demonstrate how the empirical
irregularities may be at least partially explained by this one additional component
identi�ed here.
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1 Introduction

The seminal paper by Holmström and Milgrom (1987) established elegantly that more

complex contracting problems may well have the simpler solutions. First, by allowing the

agent full control over the output distribution as opposed to limit his control to one or a

few central parameters, they showed that when it comes to implementing a particular dis-

tribution, the principal�s hands are tied: the contract that implements a given distribution

is unique and thus not subject to the complications introduced by the standard minimiza-

tion needed to �nd the optimal contract that implements an action in more limited choice

situations, such as Grossman and Hart (1983). While the contract-action combination that

solves the principal�s over-arching problem of expected utility maximization of course may

still not have a unique solution, �nding a contract-action pair that does solve the principal�s

problem does arguably get signi�cantly simpler when all contract-action pairs are unique.

Second, Holmström and Milgrom (1987) proceeded to demonstrate that when the princi-

pal and agent have CARA preferences over aggregate consumption net of the aggregate cost

of e¤ort as denominated in the units of compensation, a solution to a dynamic multi-period

extension of this problem to one where the agent observes past performance prior to his next

action is for the principal to implement the same action using the same unique contract each

and every period. Moreover, implementing this solution becomes particularly simple: the

contract can be written as a linear combination of the aggregate balances of a set of enumer-

ation accounts that track the (relative) frequency of a particular outcome being realized. In

the limiting case of continuos time, these balances become normal distributed yielding the

added bonus of an easy to obtain closed form approximate solution to the optimal dynamic

contract written on such aggregate performance measures.

The key to the latter part is of course stationarity and this is where the restrictions on

the parties preferences are crucial. As Holmström and Milgrom (1987) show, their particular

format lends itself to decomposing the principal�s multi-period problem into as many one-

period problems as there are sub-periods. Moreover, the solution to each of these problems
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is independent of the solution to any of the remaining problems and thus is the same as

the solution to the single period problem. Without this feature, the solution becomes path

dependent and the aggregation (and linearity) result no longer holds. Those that have

exploited the tractability of this framework, weather in its fundamental form or relying on the

so-labeled �ad-hoc principle,�have thus also been bound by the particular multiplicatively-

separable, negative-exponential preference set-up.

While the linearity in normal distributed performance measures is a boon to tractability

that has been instrumental in extending P-A models in ways that otherwise are o¤ limits,

as always there are no (entirely) free lunches. Some argue that while, when it comes to the

nature of empirically observed contracts, linearity may be a good �rst (local) approximation,

it is not the whole story. Many contracts have signi�cant convex features such as options.

Also, the unlimited downside not just in utility space but in terms of the actual cash transfers

that the linear contracts entertain in a normally distributed world does not seem to be entirely

descriptive either. Wealth concerns and legal limitations may be somewhat incompatible with

this from a more descriptive vantage point.

Perhaps unsurprisingly, then, there have been ongoing e¤orts to develop an alternative

framework that, while still o¤ering the coveted tractability, also could provide for the analysis

of settings where linearity itself limits the scope of the issues that can be satisfactorily

addressed. Edmans and Gabaix (2011), for example, modi�ed the assumptions of Holmström

andMilgrom (1987) in several signi�cant ways to this end. First, they allow for any preference

representation consistent with A1 in Grossman and Hart (1983).1 Second, they restrict the

underlying uncertainty to a particular class of probability distributions over which the agent

has only limited control. Third, the order of play is partially reversed - in their setting the

agent observes the state of nature before choosing his action. Fourth, the consequences of

the agent�s action(s) is assumed to be deterministic such that period output is simply the

sum of resolved uncertainty and the agents (informed) choice.

1The preference representation of Holmström and Milgrom (1987) is clearly a special case hereof.
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The �rst deviation clearly improves generality. The other three are designed to ensure

that the control problem remains rich enough that the uniqueness feature of Holmström and

Milgrom (1987) is not lost while gaining some control over the nature of equilibrium output

distributions. What is lost by Edmans and Gabaix (2011), however, is the all important

stationarity result. Because of this and because little can be said in their setting without this

critical property, they eventually resort to imposing a set of assumptions that guarantees that

the most productive action is always strictly preferred and thus will always be implemented

by the principal.

The proposed bene�ts of all of this is about the nature of the tractable contract that

implements this �most productive action." Such contracts tend to be convex and thus lend

themselves to types of inquiry contract linearity may preclude. The drawbacks are not

insigni�cant, however. The reverse order of play is not merely a technicality but a very real

and potentially serious limitation of this analysis. If it is to be thought of as economically

relevant, it must be that it is a fair characterization of a meaningful sub-set of �rms in the

economy. However, if �rms generally can hire a manager that will be able to observe their

resolution of uncertainty perfectly at any given point in time, there must be an signi�cant

role and market for monitors beyond what is present in standard P-A set-ups.

In addition, the strong assumptions, while su¢ cient to guarantee the �stationarity� in

their setting, deviations two to four above, are really not necessary. Holmström and Milgrom

(1987) extends easily to alternative preference representations and, in particular, to convex

tractable contracts, when it can be assumed that the same action is dominant in each period

regardless of history. This is true whether a particular action is assumed dominant directly

or indirectly such as via, for example, the �High E¤ort Principle�proposed by Edmans and

Gabaix (2011). As of now, however, no framework exists that avoids either the multiplica-

tively separable negative exponential (CARA) speci�cation and the resulting linearity of

Holmström and Milgrom (1987) or, in lieu of this, the drawbacks of additional assumptions

and restrictions then needed to make the contract tractable. This paper establishes one such
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arguably straight-forward extension of Holmström and Milgrom (1987) that achieves both.

The observation behind the extension developed here is a relative simple one but one that

appears to have been entirely ignored in the literature: CARA somewhat loosely implies

that the pecuniary loss (the �risk-premium�associated with a local �fair�permutation in

cash-space is insensitive to the level of wealth. But, as made precise later, there similarly

exists a particular CRRA utility function for which the pecuniary loss of a particular fair

permutation in utility-space is also independent of wealth. Accordingly, as I will show

generally, just as the CARA set-up of Holmström and Milgrom (1987) where cost of e¤ort

is denominated in cash leads to optimal e¤ort-stationarity over time, so does this particular

CRRA set-up when e¤ort costs are denominated in utiles. The latter is, of course, consistent

with the standard additively separable utility function underlying classical papers such as

Holmström (1979) a.m.o.

The bene�ts here are that optimal contracts, while remaining highly "tractable" are

strictly convex. Indeed, the model set-up presented and analyzed here extends the original

Holmström and Milgrom (1987) framework to such cases without giving purchase on the

simplicity of their solution. In particular, convexity and simplicity is achieved without any

of the baggage of Edmans and Gabaix (2011). Thus, because it is possible to obtain simple

closed form solutions to the contracting problem that invites convexity of optimal aggregate

performance-based contracts, the relevant comparative statics that can be obtained here can

also be compared and contrasted directly with those obtained from Holmström and Milgrom

(1987).

I proceed as follows. First I introduce the model modi�cations that will preserve all

features of Holmström and Milgrom (1987) except the linearity. Second I will introduce the

speci�c structure and establish formally the resulting time- and outcome-independence of

the optimal sub-period e¤ort-contract pairing when the optimal contract is represented in

utility space. I will then elaborate on the properties of the optimal contract when evaluated in

cash compensation space. Finally, I conclude by o¤ering some suggestions about potentially
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interesting applications of this framework.

2 A Single-Period Model

Key to the aggregation result of Holmström and Milgrom (1987) was to �rst establish

for their multiplicatively separable CARA preference representation, that the solution to the

principal�s problem is independent of the agent�s personal wealth or, equivalently, of the RHS

of the standard IR-constraint (Theorem 2). This is, of course, critical to the simplicity of the

multi-period extension because net wealth accumulated during past periods (or expected to

be accumulated in the future) thus has no impact on the present. The principal�s problem

for each sub-period therefore can be solved individually as one-period problems and all have

the exact same solution.

The approach I take here is similar in terms of sequencing, but the nature of the additively

separable preference representation I employ leads to a fundamental di¤erence between the

single and multi-period models that is instructive. To that end, assume that the principal is

risk-neutral and cares only about terminal aggregate output, �; net of the agent�s compen-

sation. The �nal output depends on the agent�s actions during the contracting horizon but

is not directly observable/contractible during the relevant time-frame. Instead, the principal

observes a set of N +1 informative signals, xj 2 x; j = 0; :::; N: The signals here are ordered

from lowest to highest and wlog I normalize x0 = 0: The agent�s action choice is of full

dimension in the sense that he chooses directly the probability of xi; pi 2 p; i = 1; :::; N;

with the constraint that p0 = 1�
PN

i=1 pi > 0:

As mentioned previously, the agent here is risk and e¤ort averse as represented by the

following additively separable utility function de�ned over end-of-horizon consumption, y;

H (y; p) = u (y)� v (p) ;

where u0 > 0 and risk aversion implies u" < 0; and the personal cost associated with
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implementing �action� p. Using vi (p) and vik (p) to denote the partial derivative of v (p)

w.r.t. pi and the cross-partial of vi (p) w.r.t. pk respectively, I assume that vi (p) > 0 and

vii (p) > 0; i = 1; :::; N while for simplicity I assume that v0 (p) = 0 8p:

With this, it is straight forward to con�rm that Theorem 3 of Holmström and Milgrom

(1987) the uniqueness of the contract that implements a particular p extends readily to

the additively separable case considered here. The agent�s expected utility under a given

contract, s (xi) ; is given a
N

� �
X
i=0

u (s (xi)) pi � v (p) (1)

and assuming p is the interior,2 we have the agent�s �rst-order condition as

u (s (xi))� u (s (x0)) = vi (p)� v0 (p) (2)

where uniqueness then follows from strict convexity of v (p) : Then using (1) and (2) we have

u (s (xi)) = � + v (p) + (1� pi) vi (p)�
P
k 6=i
pkvk (p) :

Letting z (:) be the inverse of u (y) such that z (u (y)) � y; the standard and familiar formu-

lation of the principal�s (�rst-order) one-period problem thus becomes

max
p

p0x�
NP
i=0

piz

 
� + v (p) + (1� pi) vi (p)�

P
k 6=i
pkvk (p)

!

with �rst-order conditions

xi = (si � s0)+
NP
i=0

piG
0

 
� + v (p) + (1� pi) vi (p)�

P
k 6=i
pkvk (p)

!
�
"
(1� pi) vii �

P
k 6=i
pkvki (p)

#
:

Obviously, then, here the role of the expected utility, �; depends on the cross-partials of the

cost function. However, for the arguably neutral case where vki (p) = 0; 8k 6= i; all terms on
2I will introduce simple assumptions below that guarantee this.
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the RHS are increasing in � due to the convexity of G (�) : Accordingly, the marginal cost of

pi is then increasing in � for all pi and the optimal pi; i = 1; :::; N; is therefore is decreasing

in � for any concave u (�) :

The broader message is, however, that there is no (obvious) counterpart to Theorem 4 in

Holmström and Milgrom (1987) in the case of additively separable preferences such as those

introduced above: the optimal action generally depends directly on the agent�s wealth and

his expected utility requirement. While that may at �rst seem to rule out getting tractability

in the multi-period extension outside of out-right exogenously imposing that one action is

always the dominant one, it is worth noting that the assumptions in Holmström and Milgrom

(1987) are su¢ cient to guarantee that the optimal contract is a simple solvable function of

aggregate performance. They are not necessary, however, as I will proceed to establish.

Before doing so, the following insight is helpful. Let w will be some given level of wealth

of the agent and consider now o¤ering the agent a (cash) lottery, e�; that is actuarially fair
in utility space. That is

E [u (w +e�)] = u (w) :
Let then e� represent the induced variation in the agent�s utility by this lottery so that for
any given realization of e�; the corresponding realization of � is determined as

� � u (w + �)� u (w) :

Now, since the agent is risk-averse, the exist a strictly positive number, �; such that

E
h
z
�
u (w) + e��i = w + �;

where � then is the actuarial cash value of the expected-utility-neutral lottery e�. Using a
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Taylor-expansion of the LHS, we have

E

�
z (u (w)) + e�z0 (u (w)) + 1

2
e�2z" (u (w))� = w + �

or
1

2
var

�e�� z" (u (w)) = �: (3)

This leads directly to the following Lemma:

Lemma 1 The cash value of a lottery acceptable to a risk-averse agent is independent of the

agent�s current wealth i¤ that agent has a power utility function where the power is one-half

so that

u (w) =

�
w � a
b

�1=2
; a < w; b > 0:

Proof. It follows from (3) that the actuarial value for a given var
�e�� depends only on

z" (�) : Accordingly, i¤ z" (u (w)) = k > 0; where k is some constant and the last inequality

follows from the agent being strictly risk-averse, � is independent of the agent�s level of

(expected) utility. Then, integrating twice over both sides of z" (u (w)) = k recovers

z (u (w)) = a+ b (u (w))2 ; b > 0;

and the lemma then follows.

As I will proceed to show, this feature is a key component for the optimal action to

be time- and outcome invariant in the case of additively separable preferences. For the

remainder of this paper I therefore rely on the following speci�c preference representation

for the agent:

H (y; p) =
�PT

t=1 yt

�1=2
�
PT

t=1 v (pt) ; T > 1: (4)
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3 Multi Sub-Period Extension Considerations

To extend the single-period model to a continuos time/outcome version, I proceed in two

steps: I �rst identify the fundamental problem involved in multi sub-period extensions of the

basic model when deviating from the multiplicatively separable CARA preference structure

of Holmström and Milgrom (1987). I then identify a production and measurement structure

set-up that will su¢ ce in terms of eliminating the complications at hand while, at the same

time, not change the nature of the principal�s dynamic problem and also enrich the nature

of the contract that solves the principal�s problem.

The �rst point to be made here is that, unlike in the multiplicatively-separable case, the

fact that the cost of implementing a particular action is (also) wealth independent in the

additively separable �square root�case pursued here does not logically imply that e¤ort is

also necessarily time and outcome independent.

Lemma 2 For the multi-period version of the model introduced here, it is not the optimal

strategy to make the agent�s future actions independent of past outcome realizations.

Proof. The result follows directly from Proposition 2 in Hemmer (2017a). To sketch a proof

here consider the simple case with just two sub periods and binary performance. Suppose

period two e¤ort is independent of period 1 output. Based on Lemma 1 it is straight

forward to verify that u (s1 (x11) + s2 (x2i))�u (s1 (x10) + s2 (x2i)) = u (s1 (x1i) + s2 (x21))�

u (s1 (x1i) + s2 (x20)) ; i = 0; 1: Now consider modifying this contract so that es2 (x10; x20) �
s2 (x20) � �s0; es2 (x10; x21) � s2 (x21) + �s1; es2 (x11; x20) � s2 (x20) + �s0 and es2 (x11; x21) �
s2 (x21) + �s1; where s0 and s1 are positive constants and � 2 R: First verify that s0 and

s1 can be constructed such that both the derivative of the expected compensation and the

derivative of expected second period e¤ort w.r.t. � are zero at � = 0. Second, then verify that

when s0 and s1 are such constructed, the derivative of �rst period e¤ort w.r.t. � evaluated at

� = 0 is strictly positive. By adding some outcome based variation in the restricted contract

st (xt) ; the principal can achieve the same �rst period incentives at a lower cost as the added
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incentives provided by second period work-load variations allow the principal to reduce the

compensation risk associated with �rst period output.

While this di¤erence between the multiplicative and additive separable representations

is perhaps interesting in its own right, the desire to make future actions conditioned on past

outcomes is of course detrimental to the ability to write the optimal contract as a simple

function of aggregate performance. At �rst glance it would seem that adding structure to

prevent this natural economic demand for path dependent pay and economic activity from

playing out would be somewhat unappealing and not that much di¤erent from assuming that

there is a dominant action to be implemented each and every sub-period. A more reasonable

way of looking at the di¤erence between this and the result of Holmström and Milgrom

(1987) is to note that production volatility generally is considered as a negative for a variety

of practical reasons.

One clear such reason is that it requires costly slack capacity being kept in reserve. While

the cost of capacity is not relevant in their formulation and thus can be safely ignored, it

is the implicit assumption that the (marginal) cost of capacity is zero (or su¢ ciently low).

That implicit assumption is one reason the optimal solution is path-dependent here. While

adding a �su¢ ciently large�capacity costs could recover �e¤ort stationarity,�I�ll pursue a

much simple approach that achieves the same objective here. Rather than acquiring capacity,

I�ll simply assume that the principal at the start of the contracting horizon must acquire a

(for the horizon) �xed technology that must be compatible, as to be de�ned in the following,

with the action(s) chosen by the agent.

As in Holmström and Milgrom (1987), �rst I make a distinction between value creation

and measures thereof. The publicly observable construct x introduced above is thus, here-

after, simply a measure that re�ect value creating activities like an accounting measure.

The actual value created in each sub-period, �t, is not assumed to be observable during

the relevant horizon. It�s expected value, �t; however, depends on both the �rms chosen

technology and the agent�s actions. Speci�cally, let the pre-determined technology for period
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t be represented by a N + 1 element vector �t with �tj � [0; 1]. Further assume that for

pti = �ti, �t (pt; �t) =
XN

i=1
�tipti while zero otherwise. In other words, if the principal

wishes to increase pti, i = 1; ::::N; for each pti he must also install a higher �ti at the start

of the contracting horizon. With this added structure I can state the following Lemma:

Lemma 3 Let the agent�s utility function be given by (4). Then the optimal solution is for

the principal is to implement the same fpt; �tg pair 8t = 1; ::::; T:

Proof. When the action cannot be contingent on realized performance, absence of wealth-

e¤ects is su¢ cient for the optimal action to be time independent as well.

At �rst glance the assumption on the link of the technology, productive action and output

may seems somewhat heavy-handed. There are several counter-points to that, however. First

note that this assumption is not su¢ cient to ensure time-independence of the optimal e¤ort

alone - this also takes the properties of the utility function (4). In Holmström and Milgrom

(1987), their assumption that the agent�s (convex) cost of e¤ort is denominated in cash rules

out any potential bene�ts of using future actions to incentivize current actions. Adding

then CARA ensures that the principal implements the same particular action in every sub-

period. In the additively separable setting I analyze here, as long as some feature of the

model, such as a "su¢ ciently" convex capacity cost or, much simpler, just having to pre-

commit to the type of technology I rely on, renders outcome dependent actions unattractive,

time independence is assured by(4).

Second, from an applied perspective, and the exercise here is aimed at producing applica-

bility, nothing is lost relative to Holmstrom and Milgrom (1987). Both the optimal action

and, thus, the properties of the optimal contract, of course, still depend on the particular

exogenous properties of the problem and as such are amenable to the full set of compara-

tive statics. That contrasts sharply with the approach of Edmans and Gabaix (2011) that

requires a singular preferred action be present regardless of the preferences of the agent(!)

and the parameters of the environment in which the agent is operating. From these van-
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tage points, the assumption that the actions match the technology/strategy chosen by the

principal, seems quite benign.3

4 Brownian Approximation

With the additional structure introduced in the previous section the multi-period contract

has the same qualitative property as that obtained by Holmström andMilgrom (1987): it can

be written as a simple function of aggregate account balances at the end of the contracting

horizon. The only di¤erence is that in the case analyzed here the contract is linear in the

account balances in utility space rather than in terms of actual cash disbursements. As

a result, here the contract is actually convex in cash space due to the convexity of the

inverse utility function. Importantly, the particular utility speci�cation behind the results

obtained lends itself well to obtaining simple-to-calculate closed form convex contracts using

the same �Brownian Approximation�pursued in the latter part of Holmström and Milgrom

(1987). For simplicity I focus on approximating the simple binomial case, as extensions are

straightforward and left to the reader.

To extent the single-period model to a continuos time/outcome version, I also rely heavily

on the methodology provided by Hellwig and Schmidt (2002) with only minor departures

to ensure consistency with the alternative preference representation and added structure I

have introduced above. I proceed in two steps: I �rst subdivide the one-period model into a

discrete time version with m sub-periods of length � = 1=m to identify speci�c conditions

under which the optimal actions for all sub-period are the same. Subsequently I proceed

to show that, in the limit as � ! 0; the solution becomes indistinguishable from that of a

one-shot model where the principal incentivizes the agent to take a costly action once that

determines the mean and variance of an (approximately) normally distributed performance

measure via a contract that is a linear function of this performance measure in utility space

3Note again that here the assumptions are su¢ cient to deliver the desired tractability. In both Holmstrom
and Milgrom (1987) and Edmans and Gabaix (2011), the assumptions are necessary.
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and thus convex in cash-space.

By restricting attention to the case of N = 1 allows me to simplify the probability

structure by letting p1 � p and p0 � 1 � p: The fundamental uncertainty embedded in

output, then, is characterized by the exogenous probability bp (> 0) which is the probability
of a positive outcome when no (unobservable) e¤ort is provided. For the base-case where

m = 1 let � � x1 � x0, where x1 > b� > x0; and b� is the the expected output associated
with bp: Denote by b�� � �b�; x�1 � �1=2x1 and x�0 � �1=2x0; so that �� = �1=2�; the

values of the corresponding variables in a given sub-period of length �: Let the expected

output associated with bp � (b�� x0) =�: From the prior sections it already follows that as in

Holmström and Milgrom (1987) an optimal solution to the principal�s problem is to induce

the agent to select the same action, denoted p� (� bp) ; in each of the m sub-periods.

With only a slight departure from Hellwig and Schmidt (2002), the personal cost of p�

to the agent is here assumed to take the form

c�
�
p�
�
= �c

�
p� � bp
�1=2

�
:4

This ensures that the cost of enhancing expected performance beyond b� is independent of
the number of sub-periods, m; which of course also implies that the cost of implementing a

particular � is independent of m here. Moreover, suppose the principal wants to implement

a particular � � b� for the entire horizon by implementing �� � �� in each of the m sub-

periods, he must implement in each sub-period p� = bp+�1=2 (p� bp) : The cost of that per
sub-period is simply, then, �c (p� bp) and the total cost for the entire horizon thus is simply
equal to c (p� bp) independent of m.5 Further, for the principal to implement a particular

4Hellwig and Schmidt (2002) rely on the cost-function

c�
�
p�
�
= �c

�bp+ p� � bp
�1=2

�
:

5Please note that the notation �� � �� is a deviation from the similar notation in Hellwig and Schmidt
(2002). In their notation, �� represents the same construct as � does in this paper.
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p� or, equivalently, a particular �� in any given sub-period, the contract must be such that

the desired p� solves

u
�
x�1
�
�
�
x�0
�
= �1=2c0

�
p� � bp
�1=2

�
:

Since the marginal bene�t in each sub-period is �� = �1=2� here, the (�rst-best) marginal

cost/bene�t trade-o¤ is also independent of the number of sub-periods with this particular

structure.

Consider now the utility-performance-sensitivity in any given sub period,

�� �
�
u
�
x�1
�
�
�
x�0
��
=�1=2� = c0=�: (5)

Because �� thus is also independent of m I�ll drop the superscript and simply refer to this

construct as �: Now, let with a bit abuse of notation convention, �r � �� b� . The second-
best cost of implementing a particular � over and above the �rst-best cost of procuring �

directly while providing the agent with an expected utility of � then can be found as


� � E

��
� + c

�
�r
�
+ e���2�� �� + c ��r��2

= E
he�2�i = �2�;

where e�� is the mean-zero variation in utility-space that (uniquely) implements � and �2� is
the variance of e��: With �2� = �2�2x; we thus have


� =
�
c0
�
�r
��2 bp (1� bp)

�
�
c0
�
�r
��2 b�2x:

independent of m as well. The (again, risk neutral) principal�s problem then simply reduces

to solving

max
�r

�
�
�r
�
�
�
� + c

�
�r
��2 � �c0 ��r��2 b�2x:
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This implies that �r solves

�0
�
�r
�

2
�
� + c (�r) + c00 (�r) b�2x� = c0 ��r� ; (6)

and that, from (5);

�r =
�0
�
�r
�

2�
�
� + c (�r) + c00 (�r) b�2x�

so that the �xed part of the agent�s utility, �r � �
�
�r; �

�
hereafter, is determined as

�r = � + c
�
�r
�
�

�r�0
�
�r
�

2�
�
� + c (�r) + c00 (�r) b�2x� :

5 Applications

The point of developing this companion framework to Holmström and Milgrom (1987)

is to, without loosing the indispensable tractability, provide slightly richer contracts that

may be helpful in informing some of the discrepancies between the normative implications

of the linear contracts and the empirical evidence accumulated. Furthermore, utilizing the

approach of Hellwig and Schmidt (2002) to achieve the e¤ort-independent variance result

directly as the limiting case of the multinomial model adds additional structure that also

has speci�c implications for the nature of the insights and predictions one can obtain here.

To facilitate speci�city and tractability, as a base-line let �
�
�r
�
=
�
�r
�2
=
�
�pr

�2
and

c
�
�r
�
=
�
pr
�2
=2: Then, using (FOC) we have

�2pr

� + (pr)2 =2 + b�2x = pr
or

pr =
q
2
�
�2 � � � b�2x� (7)
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so that

�r = �
q
2
�
�2 � � � b�2x� (8)

while

�r =

q
2
�
�2 � � � b�2x�
�

(9)

and

�r = � + p2=2� ��

= � +
�
�2 � � � b�2x�� 2 ��2 � � � b�2x�

= 2� + b�2x � �2: (10)

While it might appear that the solution here is obtained from the standard Holmström

(1979) formulation where the agent is held to his reservation utility, this is actually not the

case for the following reason. While following Lemma 1 the second-best cost of implementing

a particular �; 
�; is independent � for the speci�c preference representation used here, the

direct cost of compensating the agent for �r is not - it is strictly increasing in � due to

the lack of a counterpart to Theorem 4 in Holmström and Milgrom (1987). Thus, while the

principal�s problem breaks down to maximizing the principal�s residual net of second-best

implementation costs and the �rst-best direct cost of procuring �r; unlike in Holmström and

Milgrom (1987) the speci�cs of the solution are not independent of how the economic �rents�

are allocated. Accordingly, while the set-up has remained agnostic about the determinant(s)

of � so far, this issue has to be addressed before proceeding with comparative statics.

Regardless of how � relates to the other parameters of the problem, with the speci�c

functional forms chosen here the equilibrium value of the principal�s objective function can
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be obtained as

�
�
�; �; b�2x� =

�
�pr

�2 � ��2 + � �pr�2 + �pr�4 =4�� �pr�2 b�2x
=

�
pr
�2 �

�2 � � � b�2x � �pr�2 =4�� �2
=

�
pr
�2 ��

pr
�2
=2�

�
pr
�2
=4
�
� �2

=
�
�2 � � � b�2x�2 � �2: (11)

Of course, if � is independent of the speci�c parameters of the model, this would be consistent

with � representing the agent�s best outside option in a competitive labor market. On the

other end of the spectrum, however, principals may compete for agents to the point where

the entire marginal product, somehow de�ned, accrues to the agent.

One straight-forward way to capture this is to assume that that the principal�s acceptable

expected (excess) net pro�t as represented by (11) is zero while the minimum exogenously

determined expected utility acceptable to the agent is b� � 0. Then, if the economic conse-
quences of variations in �2; the marginal return to e¤ort in this speci�cation, accrue entirely

to the agent, it follows from (11) that

� =
�2 � b�2x
2

so that
d�

d�2
= � d�

db�2 = 1

2
:

On the other hand, then, if the principal claims the entire surplus while the agent is held to

his minimum expected utility it must be the case that

b� � �2 � b�2x
2

and independent of either �2 or b�2x. Finally, if the surplus is being shared so that both the
17



principal and the agent earn positive "rents" we have 0 < d�=d�2 < 1=2:

Because of the maintained ability to obtain closed form solutions to all endogenous vari-

ables, as summarized above, this slightly richer yet still relatively simple structure leads to

a number of straight-forward but arguably more subtle comparative statics than the stan-

dard ones based o¤ of Holmström and Milgrom (1987). Some speci�cs and suggestions are

presented in the following sub-sections.

5.1 The �Risk�and PPS Relation

To identify the predicted relation between �risk�and pay-performance sensitivity (and

thus �e¤ort�) for the model speci�cation introduced above, consider the properties of the

optimal cash compensation contract

s (X) = �2 + 2��X + �2X2

Note �rst that PPS sensitivity,

ds (X)

dX
= 2�� + 2�2X

is increasing in X due to the convexity of the optimal contract. The expected (or average)

PPS however is simply

E

�
ds (X)

dX

�
= 2�� + 2��� (12)

which here depends on �2x only through its e¤ect on � since here �; � and � are mechanically

linked in equilibrium.

The right hand side of expression (12) is, of course, also the equivalent of the slope

coe¢ cient from a regression of compensation, s (X) ; on performance X. To see this, let for

expositional simplicity A � �2; B � 2�� and C � �2: The regression coe¢ cients, '0 and

'X from a standard OLS-regression of compensation on performance are then the solution
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to the following problem:

min
'0;'X

E
h�
A+BX + CX2 � '0 � 'XX

�2i

which has �rst-order conditions

A� '0 + (B � 'X)�+ C
�
�2 + �2

�
= 0;

(A� '0)�+ (B � 'X)
�
�2 + �2

�
+ C

�
3��2 + �3

�
= 0;

so that

'X = 2C�+B

= 2�� + 2���: (13)

Thus, the predicted e¤ect of risk on the slope coe¢ cient from this regression is determined

jointly by d�
d�2x

and d�
d�2x
: Note, however, that neither � or � depends directly on the variance

of output, �2x � �2b�2x; instead they depend of the components of �2x. Further note, however,
that �2 and b�2x enter in the expressions for �; � and � always with the opposite e¤ect. Ac-
cordingly, if the PPS is estimated as the coe¢ cient from an OLS-regression of compensation

on performance, it may just as well increase as decrease in �2x: It should thus come at no

surprise either, that the substantial empirical literature that focus on this relation has been

somewhat inconclusive.

The particular result that the PPS mcan just as well increase as decrease in the variance

of the performance measure is not unique to my setting. Is due to the structure identi�ed

by Hellwig and Schmidt (2002) to ensure that performance variance is e¤ort-independent

in the continuos time limit and, thus, applies equally to the linear contract of Holmstrom

and Milgrom (1987). This is of course somewhat ironic: under the speci�c conditions

where the variance of the performance measure can be taken to be exogenous so that the
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comparative static for PPS w.r.t. �2x makes sense, this particular relation is indeterminate.

This paradox does, however, help explain the very mixed evidence in the empirical literature

on the relation between risk and PPS: because there is no theoretical prediction when

variance is exogenous, there is no reason to believe the empirical evidence would be generally

consistent with any particular hypothesis either.

While at �rst this conclusion may seem somewhat discouraging, it is, however, possible

to empirically separate the portion of risk that captures fundamental variability, b�2x, from
the �2-part that is proportional to the productivity (squared). The fact that �2x is relatively

easily decomposed empirically actually provides for additional opportunities for better un-

derstanding the empirical properties of optimal compensation contract. The remainder of

this section is dedicated to their issues of empirically decomposing the standard measure of

performance measure variance into its two key component and then to use this decomposition

to provide richer the standard PPS suggests new opportunities as the model does predict a

negative relation between the fundamental risk component and PPS while a positive relation

between the productivity component of risk and PPS. Speci�cally, if one was to look at stock

returns over reasonable horizons, the proportion of positive returns is a direct estimate of

bpx. With b�2x � bpx (1� bpx) ; �2 can then be directly recovered from the estimated overall

variance of returns over the same horizon simply as �2x=b�2x.
Consider then �rst the extreme case where the Principal captures all the rents and � � b�

and therefore constant in both �2 and b�2x. Then substitute for the equilibrium values of �;

� and � in (13) to get

b'X = 2b�
r
2
�
�2 � b� � b�2x�
�

so that

db'X
d�

= 2
p
2

b� �b� + b�2x�
�2
q
�2 � b� � b�2x

20



and
db'X
db�2x = �

p
2

b�
�

q
�2 � b� � b�2x :

The signs on the derrivatives are hardly surprising: PPS is increasing in the marginal

product of "e¤ort" and decreasing in "risk," at least when risk is properly de�ned as b�2x.
What is, if not surprising then at least generally considered, is that the strength of the

relations summarized by these derivatives depend on the allocation of "rents." To see this

�rst note that both d2b'X
db�d� and � d2b'X

db�db�2x are positive.
Then consider the case where the agent captures all "rents." Using again (13), in this

case

'X =
�
�2 � b�2x�

q
�2 � b�2x
�

so that

d'X
d�

=

q
�2 � b�2x �2�2 + b�2x�

�2

and

d'X
db�2x = �32

q
�2 � b�2x
�

:

Then �rst compare 'X to b'X for the extreme case of b� = �2�b�2x
2

or

q
�2 � b�2x �2�2 + b�2x�

�2
vs 2

p
2

b� �b� + b�2x�
�2
q
�2 � b� � b�2x

q
�2 � b�2x �2�2 + b�2x�

�2
vs 2

p
2

�
�2�b�2x
2

�2
+
�
�2�b�2x
2

� b�2x
�2
q

�2�b�2x
2q

�2 � b�2x �2�2 + b�2x�
�2

vs
p
2

(�2�b�2x)
2

2

+
�
�2 � b�2x� b�2x

�2
q
�2 � b�2x
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�
2�2 + b�2x�
�2

vs
p
2

(�2�b�2x)
2

2

+
�
�2 � b�2x� b�2x

�2
�
�2 � b�2x��

2�2 + b�2x� vs
�
�2 � b�2x�+ b�2x

�2 + b�2x vs 0

Accordingly, PPS increases in marginal pruduct and more so the more the agent�s expected

compensation increases in the marginal product.

Then do the same comparison for db'X
db�2x and d'X

db�2x ; i:e:;

�3
2

q
�2 � b�2x
�

vs �
p
2

b�
�

q
�2 � b� � b�2x

�3
2

q
�2 � b�2x
�

vs �

q
�2 � b�2x
�

Accordingly, PPS decreases in fundamental risk and more so the more the agent�s expected

compensation increases in the marginal product.

5.2 Determinants of Convexity

An obvious issue to be investigated is the driver(s) of the optimal contract�s "convexity."

There are plenty of avenues to pursue but the particular route I�ll take here is to look at

the role of productivity, �; in determining the weights on the linear and on the convex

pieces, 2�� and �2 respectively. I�ll start by considering the case where � = b� so that the
principal captures all rents. To streamline this further, de�ne p � 1 � bp; let w = p2=2 and
� 2

�
p2=2 + b�2x; p2 + b�2x� : The lower bound on � result from p � 0 with the upper bound

imposed by p � 1: While focusing on these bounds obviously is an extreme set-up with all

the down sides that comprises, it has the advantage of delivering some crispness that could

be considered helpful.
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To see this note that at � close to its lower bound here, � is (close to) zero while � is

(close to) w. Moreover, we have
d�

d�
!1

as � approaches its lower bound. Accordingly, at the low end of the feasible productivity

range, increased incentives in response to increased productivity are provided in the form of

the linear component. The idea here would be that in (very) low-skill/productivity situations,

incentives are provided in the from of piece rates: compensating based on the number of units

produced, which does not seem ad odds with casual empiricism. Sharecroppers, newsboys,

table servers all seem to �t with this.

On the other end of the productivity spectrum it is an entirely di¤erent story here,

however. With the parametrization here, �! 0 and since

d�

d�
< 0;

the weight on the linear component, 2��, is strictly decreasing as � increases towards its

upper bound. Both � and d�=d� are, in contrast both strictly positive, so that at high

levels of productivity, higher productivity implies substituting out of linear incentives and

into convex ones. This seems, at least on the surface, consistent with options being more

popular for top executives and more prevalent in strong growth environments such as the

tech sector of the economy.

Moreover, there is an interaction-e¤ect between the two pieces of overall risk in terms of

the convexity of the optimal contract. Using the parameter values of the prior application,

it is easily veri�ed that for very high values of �; d��=db�2x > 0 while d�2=db�2x < 0: In

contrast, d��=db�2x and d�2=db�2x are both strictly negative for low values of �: In other words,
while increasing fundamental risk decreases (average) PPS regardless, in high productivity

environments the linear component actually increases while at the low productivity side both

risky components are scaled back.
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Finally, then, consider the case where the agent gets all the rents. Note that in this case

� = 0; and all rewards to the agent then originates from the convex component so that

the degree of convexity, as is PPS, is increasing in the marginal product and decreasing

in the fundamental risk parameter. This suggests that high marginal product and a strong

bargaining position for the agent both lead to more convex contracts. If the marginal product

to some degree re�ect managerial talent and if talent is in short supply it would seem

likely that bargaining power and marginal product should be positively related. This, in

turn, should then strengthen the proposed positive relation between convexity and marginal

product identi�ed in the case where the principal keeps all the rents.

5.3 Performance Measure Properties and Design

The �nal implication pursued here is that of the design of an optimal performance measure

and the empirical �ngerprint associated with better performance measures. What is of

particular interest in this section is the dynamic properties of the aggregate performance

measure X. The main insight is again subtle but important: while the optimal contract can

be written just on aggregate performance, the parameters and the e¢ ciency of the contract

depends critically on the time-series properties of measured performance holding all else

constant. That is, performance measures that are indistinguishable on all dimensions in the

aggregate but do not possess the same dynamic properties are not equal from the perspective

of the second-best. Aggregates are su¢ cient, but aggregates are not su¢ cient for evaluating

how good they actually are from the perspective of contracting e¢ ciency.

For expositional ease, consider the semi-parametric mode introduced above as a bench-

mark with a bit of additional structure to the speci�cs of the performance measure, x:

Speci�cally, introduce a separate productivity parameter, say ; so that the probability of

x�1 ; P r
�
x�1 jbp; p; � � p� = bp+�1=2 (p� bp) : Then consider any class of performance mea-

sures, X; for which i) the variance �2bp (1� bp) = �2; ii) the sensitivity to the agent�s action
d��=dp� = �, and the mean is the same given the agent�s action which, given ii); is implied
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by iii) b� = b�: Notice that i) implies
� =

s
�2xbp (1� bp) ;

ii) implies

 = �=�;

while iii) implies

x0 = b�� bp�:
In other words while i) imposes an implicit relation between � and bp; the free parameters

 and x0 can always be adjusted to satisfy ii) and iii): Importantly, it is easily veri�ed that

as a result of this, changing bp while satisfying i); ii) and iii) does not a¤ect the structure
of the solution to the principal�s problem as represented by (7)-(10) here. What does have

to change, however, is b�2x which is maximized for bp = :5 and is approaching zero as jbp �
:5j ! :5: This is important for two reasons: �rst while b�2x is a fundamental driver of
contracting e¢ ciency variations in b�2x is not easily identi�ed identi�ed by the properties
aggregate performance. Where b�2x is more easily detected is in the time-series properties of
performance: if performance evolves symmetrically around its mean b�2x is (close to being)
at its max. On the other hand a measure with more frequent smaller gains and fewer but

bigger losses or vice versa, fewer but larger gains but more frequent smaller losses, indicate

lower values of b�2x:
This seems particularly interesting from an accounting perspective. Accounting conven-

tions are broadly about creating timing di¤erences and thus about altering the time-series

properties of earnings. Under something akin to clean surplus accounting the properties of

aggregate earnings over a reasonable horizon are however fundamentally una¤ected by the

particular approach to accounting measurement chosen by the �rm. In terms of the model,

this is exactly the consequence of being able to choose a bp without being able to alter the
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aggregate mean, variance or sensitivity to e¤ort over a reasonable horizon. Moreover, choices

of bp 6= :5 have reasonably straight forward interpretation in terms of accounting measure-

ment bias: few �big�write-o¤s in conjunction with being able to produce smaller positive

surprises over longer horizons (think �big bath�behavior in the extreme) is generally consid-

ered a feature of aggressive reporting while making overly cautious loss provisions for many

periods that on average then all reverse in the period of repayment is generally considered

conservative accounting. In the model, either is strictly preferred to the neutral case.

In addition to thus suggesting value of biased accounting measures it also o¤er a means

to reconcile the apparent appeal of both conservative and aggressive practices: timing in-

duced bias, regardless of the direction of the bias, reduces the fundamental variance of the

performance measure and improves contracting e¢ ciency. This, of course also brings about

some suggestions for empirical inquiry along the lines of what was discussed in the previous

sub-section. While  generally is unobservable, holding aggregate (average) performance

and performance variance constant, the degree of asymmetries in periodic accounting per-

formance continues to provide a measure of b�2x: This, in turn, provide a link between the
time-series properties of measured performance, the convexity of contracts and their average

PPS. Particularly, it predicts that there is not a monotone relation between accounting bias

and properties of accounting based contracts: higher biases leads to higher average PPS.

While obviously only very simple and incomplete, this at least suggest that the framework

here proposed, may have some promise in generating speci�c easily testable predictions along

a number of such dimensions.

6 Conclusion

In this paper I develop a simple agency framework based on the dynamic approach �rst

proposed by Holmström and Milgrom (1987). The key distinguishing feature here is that

I rely on an additively separable (in aggregate consumption and periodic e¤ort) preference
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structure instead of the multiplicatively separable negative exponential representation in

their original speci�cation. I proceed to show that when the agent has square-root prefer-

ences for aggregate consumption and the risk-neutral principal must choose a production

technology evolution for the contracting horizon to match future action choices by the agent

at the start of this horizon, the key stationarity result of Holmström and Milgrom (1987)

re-emerges in my setting. Combined with the uniqueness of the contract that implements

a given action in each sub-period, their main aggregation result applies here as well: the

optimal contract can be written as a simple linear function of the aggregate balances of a

set of enumeration accounts. The key di¤erence here is that while the contract in the set-

up in Holmström and Milgrom (1987) is linear in cash-space, with the additively separable

speci�cation I use it is linear in utility-space and, thus, adding a convex component to the

linear in cash-space.

Relying on Hellwig and Schmidt (2002) to obtain the continuos time Brownian motion

version from the discrete time binomial version of the model as the limiting case when the

length of the sub periods approach zero, provides additional structure that when paired with

some additional simplifying (standard) assumptions on the nature of the production and

cost functions along with on how actions are captured makes the framework as amenable to

comparative statics as the so called LEN model that originated in Holmström and Milgrom

(1987). In fact, because my speci�cation includes an easily identi�able convex component

and additional structure on the components of performance volatility, the set of compara-

tive statics and directly testable empirical predictions that can be obtained here holds real

promise for enhancing our understanding of the determinants of optimal contracts as well as

optimal performance measure design. The paper closes by providing a number of examples

suggestive of this potential.
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