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Abstract

I introduce imperfect information and learning for unobservable long-run productivity

into a dynamic asset pricing model and provide an explanation for the profitability

premium. Firms with high profitability have greater information precision and face

greater exposure to updated long-run productivity shocks through the learning mech-

anism. Deviating from the existing models without learning, my framework provides a

unified explanation for a wide set of empirical facts: firms with high cash-based operat-

ing profitability (1) have higher information precision and capital allocation efficiency;

(2) are more exposed to aggregate productivity shocks and, hence, earn higher expected

returns; and (3) exhibit shorter cash-flow duration.
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1 Introduction

One of the key determinants of a firm’s fundamental asset valuation, investment, and hiring

decisions depends on the manager’s assessments of the firm’s average productivity. In this

paper, I investigate the role of managers’ rational learning on firms’ quantity dynamics and

the cross-section of stock returns, both empirically and theoretically. To make the case for

rational learning, I first document a set of empirical findings that link cash-based operating

profitability (which presents better information quality than other types of profitability mea-

sures; see Ball, Gerakos, Linnainmaa, and Nikolaev (2016)) to information precision, resource

allocation efficiency, investment-q regression, the timing of cash flows, and, most essentially,

the expected returns in the cross-section of stocks. By incorporating a learning mechanism,

I show that a standard investment-based asset pricing model provides a unified theory that

rationalizes all these empirical patterns.

It remains an empirical challenge to measure the quality of information that managers

learn from firms’ past performance. To address this challenge, I demonstrate that cash-

based operating profitability contains more precise information about firms’ true economic

conditions as follows. First, firms with high cash-based operating profitability have higher

analyst coverage and lower dispersion in earnings forecasts. Second, I present evidence on

a negative relation between cash-based operating profitability and the dispersion of static

marginal product of capital (MPK), which has been interpreted as a form of capital misal-

location by Hsieh and Klenow (2009) and Chen and Song (2013). These stylized facts show

that cash-based operating profitability is a valid measure of information precision. Greater

information precision facilities firm managers’ effort to learn their firm-specific productivity

and, therefore, attain higher efficiency in capital allocations.

To quantify the impact of information precision on firms’ decisions and stock returns,

I deviate from standard investment-based asset pricing models by incorporating imperfect

information and rational learning, following Abel (2018) and Andrei, Mann, and Moyen

(2019). I consider an economy with imperfect information and develop a dynamic model with

a large cross-section of firms. Firms invest in physical capital to maximize the value of the

firm for existing shareholders, where the cross-sectional heterogeneity is driven by firm-level

differences in information precision. There are two sources of aggregate risk: aggregate short-

run and long-run shocks. Both aggregate shocks carry a positive price of risk. Aggregate long-

run productivity is unobservable and evolves stochastically over time. An individual firm’s

manager faces a signal extraction problem by observing aggregate short-run productivity and

a firm-specific signal that contains information about changes in long-run productivity plus

noise. Firms with greater information precision have lower loadings on the noise component
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and, therefore, receive more precise signals to learn aggregate productivity than those with

lower information precision.

This learning mechanism produces two important patterns in asset returns. First, high

information precision causes firms to update their beliefs faster, which endogenously produces

more variations in these firms’ q. Such learning-induced variation is informative about firms’

investment policies when firm managers make investment decisions to maximize the value of

the firm, taking as given a stochastic discount factor.

Second, the model generates a positive relation between cash-based operating profitability

and future stock return, and the return spread is sizable, as in the data. The intuition for

this result is as follows. The difference in expected returns across firms is due to differences

in variations of q, which reflects different exposure to aggregate productivity shocks. A

higher variation in q leads to higher risk premia, as these firms’ returns comove aggregate

productivity shocks.

Relatedly, firms with low information precision have lower efficiency in capital realloca-

tion, are less able to utilize aggregate technology growth, and pay lower payouts. Hence,

consistent with the data, these firms feature longer cash flow durations, as their future cash

flows account for greater weight; in contrast, their counterparts have shorter cash flow dura-

tions.

In my quantitative analysis, I present that my model, when calibrated to match both con-

ventional macroeconomic quantity dynamics and asset pricing moments, generates a signifi-

cant cash-based operating profitability premium and a negative relation between cash-based

operating profitability and cash flow duration. Consistent with the data, high-cash-based

operating profitability firms have a higher average return and a shorter cash flow duration.

Quantitatively, my model replicates the joint empirical relationships among the MPK, in-

vestment rate, expected returns, and cash flow duration in the data reasonably well.

To further understand and test the model’s economic mechanism, I perform several rele-

vant analyses using data. First, to investigate the empirical link between cash-based operat-

ing profitability and expected returns in the cross-section, I construct a cash-based operating

profitability measure. Regarding return predictability, consistent with Ball, Gerakos, Lin-

nainmaa, and Nikolaev (2016), I find large and significant predictive power for cash-based

operating profitability: Firms with high cash-based operating profitability earn higher ex-

pected returns than firms with low cash-based operating profitability by a value of 4.55%

per annum. The difference in the return spread is economically large, and this value is 2.5

standard errors from zero.

Second, I provide empirical evidence that directly supports the negative link between cash-
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based operating profitability and cash flow duration, where the measure of cash flow duration

follows Dechow et al. (2004), Weber (2018), Gonçalves (2019), and Gormsen and Lazarus

(2019). Therefore, this evidence validates the implication of the model I noted previously

that explores the negative relation between the timing of cash flows and cash-based operating

profitability.

In addition, I find better performance of the investment-q regression among firms with

higher cash-based operating profitability. The interpretation is that firms with more precise

information update their beliefs about future cash flows and therefore endogenously amplify

volatility in their valuations. In addition, I document that productivity among firms with

lower cash-based operating profitability is less sensitive to aggregate productivity shocks than

that of their counterparts.

To test the model’s economic mechanism, I consider a two-factor asset pricing model

that includes aggregate short-run and long-run productivity shocks as the pricing factors,

following Bansal and Shaliastovich (2013) and Ai, Croce, Diercks, and Li (2018). I empiri-

cally document that the normalized payout (i.e., a proxy for cash flow) of firms with lower

cash-based operating profitability is less exposed to both long- and short-run aggregate pro-

ductivity shocks. Second, I show that exposure to these two shocks is positively priced and

reasonably captures the cross-sectional variation in stock returns across portfolios sorted by

cash-based operating profitability. Moreover, consistent with the model, the good fit of the

two-factor model is driven by the increasing exposure of portfolios sorted on cash-based oper-

ating profitability to these two shocks, especially in the high-quintile portfolio. Summarizing

these findings, high cash-based operating profitability firms provide higher expected stock

returns because they have higher loadings on both the short- and long-run productivity risks

that are both positively priced.

To establish the robustness of the empirical findings, I perform two additional analyses.

I show that the unconditional asset pricing factor model cannot explain the return spread

sorted on cash-based operating profitability. My paper documents that the CAPM model

and other standard asset pricing factor models (e.g., Fama and French (1996), Fama and

French (1996), Carhart (1997), Fama and French (2015), and Hou, Xue, and Zhang (2015))

cannot explain the size of the return spread in the data. Such a positive return relation is not

driven by other known predictors according to Fama and MacBeth (1973) regressions. I show

that the return spread is exhibited by in both small and large firms, although the magnitude

of the return spread is larger among small firms. In addition, independently double-sorted

portfolios indicate that return predictability cannot be attributed to behavioral bias and

financial distress. Finally, further analyses do not find support for other explanations related

to existing systematic risks.
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Related Literature My paper belongs to the literature that studies implications of learn-

ing for asset market valuations.1 Following this literature, I simply assume that both the firm

and the financial market learn symmetrically and simultaneously. In contrast, many papers

study the implications when managers can access better information than other agents (e.g.,

Myers and Majluf (1984)), when managers extract information from their stock prices and

then make investment decisions (e.g., David et al. (2016)), or when managers with attention

constraints learn both firm-specific and aggregate information and make investment deci-

sions (e.g., Gondhi (2020)). Closer to my paper, Andrei, Mann, and Moyen (2019) build

an investment model that allows the firm to learn passively for stochastic technological in-

novations and study the relationship between corporate investment and Tobin’s q. Distinct

from existing research, I assume that investment per se depends on the updated belief about

long-run productivity through learning and show that accounting for the learning channel

delivers important and nontrivial implications for the determinants of corporate investments

and, more important, the cross-section of stock returns.

The theoretical approach in this paper is connected to the production-based asset pricing

literature by endogenizing investment and linking it to the cross-section of expected returns.2

This strand of model primarily focuses on aggregate shocks that originate from the real econ-

omy, including investment-specific technology (IST) shocks (e.g., Kogan and Papanikolaou

(2013, 2014)), adjustment cost shocks (e.g., Belo et al. (2014)), and financial shocks (e.g.,

Belo et al. (2018), Ai et al. (2019)).3 My paper differs in that I focus on the heterogeneity in

information precision, which allows me to provide a novel learning mechanism to explain the

empirical failure of the standard capital asset pricing model (CAPM), which is different from

the existing investment-based literature that highlights the role of either investment shocks

or adjustment shocks.

This paper is related to a growing field of research that explores the impact of learning

on capital misallocation. Using firm-level panel data from China, Columbia, and Chile, Feng

(2018) finds that misallocation decreases with firm age and provides a firm life-cycle learning

mechanism to interpret the empirical finding. Furthermore, using U.S. firm-level data, I find

a consistent negative relation between cash-based operating profitability and MPK dispersion

1Pastor and Veronesi (2009) provides a comprehensive review of learning models in finance. David (1997),
Veronesi (2000), and Ai (2010) study how learning and imperfect information affect both asset valuations
and the risk premium in the aggregate equity market, while my work studies the implication of state variable
learning for the cross-section of expected returns.

2The theoretical foundation for Tobin’s q theory of investment refers to Keynes (1936), Brainard and Tobin
(1968), Tobin (1969), Mussa (1977), Lindenberg and Ross (1981), Abel (1983), Abel and Eberly (1993), Abel
and Eberly (1997), Erickson and Whited (2000), Abel (2018), and among many others.

3There is a rich literature on investment-based asset pricing models, but I do not attempt to summarize
it here. A partial list includes Cochrane (1991), Jermann (1998), Tuzel (2010), Lin (2012), Belo and Lin
(2012), Eisfeldt and Papanikolaou (2013), Belo et al. (2014), Belo et al. (2017), Belo et al. (2018), and Lin
et al. (2019), among others.
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and use this empirical pattern as supporting evidence for my model assumption of heteroge-

neous information across firms with different cash-based operating profitability, which allows

me to incorporate the role of learning and study asset pricing implications. David et al.

(2016) examines and quantifies the effects of resource misallocation across firms through in-

formation frictions. David, Schmid, and Zeke (2018) develops a theory to link misallocation

to systematic investment risks, but without a learning channel. In contrast, I focus on asset

pricing in the cross-section. In particular, I show that through a learning channel, firms with

high cash-based operating profitability are subject to less capital misallocation and feature

higher integration with aggregate fluctuations. Therefore, these firms face higher aggregate

risk exposure and are thus riskier than firms with low cash-based operating profitability.

My empirical analysis builds on a vast literature to investigate the predictive power of ac-

cruals for the cross-section of stock returns. One line of research has traditionally interpreted

the accrual anomaly as being driven by mispricing, according to Sloan (1996) which connects

accruals to earnings persistence and mispricing from errors in expectations (e.g., Xie (2001),

Barth and Hutton (2004), Richardson et al. (2005)). The other line of research explains that

investors fail to distinguish accruals from cash flows and, therefore, overreact to past growth

by underestimating the sustainability of accruals (e.g., Thomas and Zhang (2002), Hirshleifer

et al. (2004), Richardson et al. (2005), Dechow et al. (2008)). In addition, more recent works

link accruals to investment and growth by classifying them as investments in working capital

(e.g., Zhang (2007) and Wu et al. (2010)). To the best of my knowledge, the closest related

empirical work to my paper is Ball et al. (2016), which constructs a cash-based operating

profitability measure by purging non-cash accruals from operating profitability. Such a pre-

dictor presents significant predictive power by subsuming the power of accruals or operating

profitability. Although the empirical work focuses on a measure, cash-based operating prof-

itability, as documented in Ball et al. (2016), the primary difference is that I provide an

equilibrium model with a learning mechanism to generate asymmetric exposures to common

productivity shocks among firms with different cash-based operating profitability. In addi-

tion, such a learning framework also captures the positive relationship among cash-based

operating profitability, the explanatory power of investment-q regression, and the negative

link with cash flow duration.

My paper is also situated in the growing literature on continuous-time asset pricing the-

ory (e.g., Cochrane (1991), Berk et al. (1999) Gomes et al. (2003), Menzly et al. (2004),

Zhang (2005), Gomes et al. (2009), Pástor and Veronesi (2009), Santos and Veronesi (2010),

Papanikolaou (2011), Gârleanu et al. (2012), Eisfeldt and Papanikolaou (2013), Pástor and

Veronesi (2012, 2013), Kogan and Papanikolaou (2013, 2014), van Bingbergen (2016)) and

production-based asset pricing, for which Kogan and Papanikolaou (2012) provide an exhaus-
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tive literature survey. Different from these papers, my paper explores the effect of learning

on the long-run productivity and contributes to the literature that relates consumption or

productivity risk to equity risk premiums in an amplified manner from the perspective of

learning.

The rest of my paper is organized as follows. Section 2 shows evidence by reporting

summary statistics and stylized empirical facts. I describe my model framework and analyze

its quantitative asset pricing implications in Section 3. I discuss further empirical tests for

the model and its testable implications in Section 4. In Section 5, I discuss alternative ex-

planations for the relation between cash-based-operating profitability and return. I conclude

this paper in Section 6. The Internet Appendix contains details of variable constructions,

additional empirical evidence, and the model solution.

2 Stylized Empirical Facts

First, I report summary statistics in my data. Second, I present several stylized facts that

motivate my interest in studying the link between imperfect information, learning, and the

cross-section of expected returns sorted on cash-based operating profitability. In particular, I

examine the empirical link between cash-based operating profitability and analysts’ forecast

dispersion, as well as coverage, and between cash-based operating profitability and capital

misallocation. I am able to clearly point out the learning mechanism underlying the cash-

based profitability premium.

2.1 Summary Statistics

I calculate a firm’s operating profitability by following the computations in Ball, Gerakos,

Linnainmaa, and Nikolaev (2015): sales (SALEQ) minus cost of goods sold (COGSQ) minus

sales general, and administrative expenses (XSGAQ) (excluding research and development

expenditures (XRDQ)).4 Such a measure captures the performance of the firm’s operations

and is not affected by non-operating items, such as leverage and taxes. To evaluate the abil-

ity of the cash portion of operating profitability to predict stock returns, I remove non-cash

components included in the computation of operating profitability and scale by lagged total

assets to create the cash-based operating profitability measure. These noncash components

include the changes in accounts receivable (RECTQ), inventory (INVTQ), prepaid expenses

(XPP), deferred revenue (DRCQ plus DRLTQ), accounts payable (APQ). Accruals are mea-

4Variables used in my sample are based on quarterly Compustat, while those in Ball, Gerakos, Linnainmaa,
and Nikolaev (2015) and Ball, Gerakos, Linnainmaa, and Nikolaev (2016) are based on annual Compustat.
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sured as changes in noncash working capital minus depreciation expense (DPQ), in which

noncash working capital is equal to the change in noncash current assets (ACTQ-CHQ) mi-

nus the change in current liability (LCTQ) less short-term debt (DLCQ) and tax payable

(TXPQ), and I normalize accruals by lagged total assets.5

In Table 1, I report pooled summary statistics and correlation matrix between cash-based

operating profitability and other characteristics for each quarter. Other variables include

accruals (ACR/AT), market capitalization (ME), book-to-market ratio (B/M), investment

rate (I/K), and return on equity (ROE).6

In Panel A of Table 1, I report the pooled mean, median, standard deviation (Std), 5th

percentile (P5), 25th percentile (P25), medium, 75th percentile (P75), and 95th percentile

(P95) of all these variables. Observations denote the valid number of observations for each

variable. I have a total of 469,741 firm-year-quarter observations with non-missing cash-based

operating profitability (COP/AT). The average of cash-based operating profitability is 0.02,

and the median of it is 0.03, suggesting that the distribution is slightly skewed to the left.

The mean of quarterly firm-level accruals is 0.00 with a standard deviation of 0.19. The

average firm’s book-to-market ratio, investment rate, and return on equities are 0.72, 0.16,

and 0.00. The average size of the firms in my sample 2,431.15 when I measure the size in

2009 (million) dollar term. I also provide the industry-level summary statistics of cash-based

operating profitability in Section A.5 in the Internet Appendix.

In Panel B, I present the correlation coefficients of all variables considered in Panel A.

I find that cash-based operating profitability is generally not highly correlated with other

variables, except that its correlation coefficients with accruals (ACR/AT), size (ME), book-to-

market ratio (B/M), investment rate (I/K), and return on equity (ROE) are 0.04, -0.02, 0.00,

and 0.00, respectively. These mild correlations suggest that cash-based operating profitability

contains different information in my sample.

2.2 Univariate Portfolio Sorting: Returns and Firm Characteris-

tics

To investigate the link between cash-based operating profitability and the cross-section of

stock returns, I construct quintile portfolios sorted on firms’ cash-based operating profitabil-

ity normalized by total assets (ATQ) in Panel A, property plant and equipment (PPENTQ)

in Panel B, book equity (BE) in Panel C and sales (SALEQ) in Panel D by one quarter, and

5My measure of accruals is consistent Zhang (2007) and Wu, Zhang, and Zhang (2010).
6Detailed information regarding the construction of other variables refers to Section A.1 in the Internet

Appendix.

7



report each portfolio’s post-formation average stock returns. I form portfolios at the begin-

ning of every January, April, July, and October by sorting all sample firms with non-missing

cash-based operating profitability into five groups from low to high within the corresponding

30 industries, according to Fama and French (1997). As a result, I have industry-specific

breaking points for quintile portfolios for each March, June, September, and December. I

then assign all firms with non-missing cash-based operating profitability in January, April,

July, and October into quintile portfolios. Thus, the low (high) portfolio contains firms with

the lowest (highest) cash-based operating profitability in each industry. After forming the

five portfolios (from low to high), I calculate the value-weighted monthly returns on these

portfolios over the next three months (i.e., quarterly rebalanced portfolios). To examine the

profitability-return relation, I also form a high-minus-low portfolio that takes a long position

in the high-profitability portfolio and a short position in the low-profitability portfolio and

calculate the returns on this portfolio.

In Panel A to Panel D of Table 2, the top row presents the annualized average excess

stock returns in percentage (E[R]-Rf, in excess of the risk-free rate), t-statistics, standard

deviations, and Sharpe ratios of the six portfolios I form. Table 2 shows that a firm’s cash-

based operating profitability forecast stock returns. Taking Panel A based on cash-based

operating profitability normalized by total assets (which is my primary proxy of cash-based

profitability) as an example, the low, 2, 3, 4, and high portfolios provide annualized excess

returns of 5.50%, 7.12%, 7.70%, 7.83%, and 10.05%, respectively. More importantly, the

high-minus-low portfolio provides 4.55% annualized excess return with a t-statistic of 2.50.

In addition, the Sharpe ratios of the low, 2, 3, 4, and high portfolios are 0.30, 0.39, 0.47, 0.51,

and 0.64, respectively, and that of the high-minus-low portfolio is 0.47, which is comparable

to the Sharpe ratio in the aggregate equity premium. Similar patterns are observed in other

panels. The finding that the return on the high-minus-low portfolio is economically large and

statistically significant across all panels suggests a significant predictive ability of firm-level

cash-based operating profitability for stock returns.

[Place Table 2 about here]

Overall, Table 2 provides empirical evidence for the explanatory power of firm-level cash-

based operating profitability for subsequent stock returns. For the rest of my analyses, I will

focus on the cash-based operating profitability normalized by lagged total assets.

I then report the average firm characteristics across quintile portfolios in Panel C of

Table 1. On average, my sample contains 3, 076 firms. Firms are evenly distributed across

five portfolios sorted on cash-based operating profitability, where the average number of

firms in each portfolio ranges from 605 to 624. The cross-sectional variations in cash-based
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operating profitability are large. The average cash-based operating profitability in the lowest

portfolio is −0.05; in contrast, the average cash-based operating profitability in the highest

portfolio is 0.09. Given that I remove the non-cash component from operating profitability

when calculating cash-based operating profitability, the accruals presents a downward sloping

pattern across quintile portfolios. The size, investment rate (I/K), and return on equity

(ROE) increase in portfolios sorted on cash-based operating profitability, which implies firms

with high cash-based operating profitability, on average, are larger and profitable firms with

more investment opportunities. Moreover, I observe a downward sloping pattern of book-to-

market ratio, since firms with higher cash-based operating profitability have higher market

valuations and thus exhibit lower book-to-market ratio than their counterparts. Finally, I

note a negative link between cash-based operating profitability and cash flow duration. Such

a negative correlation is robust to a different measures of cash flow duration, according to

Weber (2018), Gonçalves (2019), and Gormsen and Lazarus (2019).

In summary, firms with high cash-based operating profitability have lower accruals, larger

market capitalizations, lower book-to-market ratios, higher investment rates, higher profits,

and shorter cash flow duration.

2.3 Imperfect Information and Capital Misallocation

First, to identify the imperfect information and learning mechanism, I investigate the joint

link between cash-based operating profitability and analysts’ forecast dispersion, as well as

coverage, on the one hand, and between cash-based operating profitability and capital mis-

allocation, on the other.7 To do so, I implement a standard procedure and sort firms into

quintile portfolios based on these firms’ cash-based operating profitability within Fama and

French (1997) 30 industries. In Table 3, I report time-series averages of the cross-sectional

medians of analysts’ forecast dispersion and coverage,8 and the cross-sectional dispersion of

the marginal product of capital (MPK, hereafter) within each quintile portfolio as a mea-

7“Misallocation” is somewhat of a misnomer in my environment, as firms are acting optimally given the
information at hand. I follow the literature and use the term to refer broadly to deviations from marginal
product equalization.

8Analysts coverage (Coverage) is calculated using the number of distinct analysts who made fiscal year
one earnings forecast for the stock during the month [t-11, t] as used in Hong et al. (2000) and Ali and
Hirshleifer (2019). If a firm is not covered by the Institutional Brokers’ Estimate System (IBES), I assign its
stock to zero analyst coverage. Moreover, following Garfinkel (2009), Diether, Malloy, and Scherbina (2002),
and Banerjee (2011), I obtain the analyst forecast data from the IBES database, as well. Based on individual
analysts’ forecasts, I construct the analysts’ forecast dispersion by calculating the standard deviation of
earnings forecasts scaled by the absolute value of the mean earnings forecast. If the mean earnings forecast
is zero, according to Diether, Malloy, and Scherbina (2002), then I assign the stock to the highest dispersion
category. In general, dropping those observations with a mean earnings forecast of zero does not significantly
affect my analysis.
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sure of capital misallocation, following Hsieh and Klenow (2009). Here, I provide a brief

description of the evidence but will reserve details of the data construction to the Internet

Appendix A.2. Within each quintile portfolio of firms, I first calculate the MPK dispersion

within narrowly defined industries, either at the Fama and French (1997) 30 industries level

or at a more refined SIC two-digit level, and then average the dispersion across the industries.

[Place Table 3 about here]

In Panel A of Table 3, I report the average analysts’ forecast dispersion and coverage

across quintile portfolios. On average, firms in the high (low) portfolio have 30 (18) analysts

actively tracking and publishing opinions on these firms’ stock. Moreover, I show a pattern

of falling slopes in analysts’ forecast dispersion across quintile portfolios sorted on cash-based

profitability. In particular, the range of analysts’ forecast dispersion is from 2.84 in the low

portfolio to 2.22 in the high portfolio. Turning to capital misallocation, I observe a salient

inverse relationship between cash-based operating profitability and capital misallocation in

Panel B. Firms with higher cash-based operating profitability present lower capital misal-

location, ranging from 1.33 in the lowest quintile to 0.76 in the highest quintile. Such a

downward sloping pattern of misallocation across five quintile portfolios are robust not only

to different industry classifications but also to different measures of MPK (i.e., Chen and

Song (2013) and David, Schmid, and Zeke (2018)).9

The upward sloping pattern of analysts’ coverage and the downward sloping pattern of

analysts’ forecast dispersion and capital misallocation provide suggestive evidence to support

my key model assumption that low-profitability firms contain less information about their

exposure to common productivity shocks than high-profitability firms. As documented in

an extensive literature, analysts are specialized professionals to collect information about

stocks and disseminate it to the public. A greater number and less disagreement of analysts

producing and disseminating research about a given stock should result in a higher quality

of information flow to market participants.10 On the other hand, consistent with David et al.

(2016), less information leads to lower resource reallocation efficiency. My model predicts a

negative cash-based operating profitability and capital misallocation relation, as summarized

in Lemma 1 of Section 4, strongly supported by the evidence in Table 3.

9The average MPK dispersion over the whole sample in my calculation is broadly consistent with that in
Chen and Song (2013) and David, Schmid, and Zeke (2018), although the latter paper did not calculate the
dispersions across cash-based-operating-profitability-sorted portfolios.

10A partial list of papers using analyst coverage as a measure of the quality of the information environment
includes Brennan, Jegadeesh, and Swaminathan (1993),Hong, Lim, and Stein (2000),Hou and Moskowitz
(2005),Chan and Hameed (2006),Duarte, Han, Harford, and Young (2008),Kumar (2009),Hong and Kacper-
czyk (2010), Kelly and Ljungqvist (2012), and Ali and Hirshleifer (2019). Ganguli and Yang (2009) and
Angeletos and Werning (2006) investigate other dimensions of how the supply of information affects financial
markets.
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3 The Model

In this section, I develop a continuous-time equilibrium model that features imperfect in-

formation to account for firm investment and to explain the role of learning in stock prices

and expected stock returns. My specification of the learning mechanism is according to Abel

(2018) and Andrei, Mann, and Moyen (2019).

3.1 Firms and Technology

I consider an economy with a continuum of firms that produce a flow of output given by

Yit = eait+xtKit, (1)

where Yit is firm i’s output, ai,t is the firm-specific component of productivity, xt is the

aggregate short-run productivity shock that affecting the output of all existing firms, and

Kit is firm i’s capital. Without loss of generality, I abstract from describing the flexible labor

decision. The output of firm i is affected by the aggregate short-run productivity shock,

whose evolution is given by a mean-reverting process:

dxt = ρx(µt − xt)dt+ σxdZ
x
t , (2)

where Zx
t is a standard Brownian motion, ρx and σx are strictly positive, and µt is the

long-run mean of xt. The long-term mean µt also follows a mean-reverting process:

dµt = ρµ(µ̄− µt)dt+ σµdZ
µ
t , (3)

where ρµ and σµ are strictly positive, and Zµ
t is a standard Brownian process. Moreover, the

output has a firm-specific component ait, which evolves according to another mean-reverting

process:

dait = −ρaaitdt+ σadZit, (4)

where ρa and σa are strictly positive, and Zit is a standard Brownian process. Firm-specific

productivity shocks are idiosyncratic in the sense that they are independent of each other of

the economy-wide productivity shock. Such the mean reversion property in firms’ productiv-

ity precludes the exploding growth rate of aggregate output and guarantees an equilibrium

nondegenerate cross-sectional distribution of firms’ productivity and capital, in which the

heterogeneity and persistence in firms’ productivity are consistent with findings in the exist-

ing study (i.e., Bartelsman and Doms (2000)).
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Firm i’s capital stock Kit depreciates at a common fixed-rate 0 ≤ δ ≤ 1, and firm i

can increase its capital stock by undertaking investment Iit. Therefore, the stock of capital

accumulates according to the law of motion:

dKit = (Iit − δKit)dt. (5)

Investment is irreversible and costly to adjust. The adjustments to the capital stock, mea-

sured in units of the investment, follow an increasing and convex function of the investment

Ψ(Iit, Kit) =
χ

2

( Iit
Kit

)2

Kit, (6)

where χ is a strictly positive adjustment parameter so that the adjustment cost function is

strictly convex.11

3.2 Learning about Long-run Productivity

Firm i observes the short-run productivity but cannot observe the long-run mean µt. Instead,

firm i forms expectations over its future stream of cash flows but cannot perfectly infer the

process driving cash flows from past realizations because the unobservable long-term mean

µt evolves stochastically.

The firm learns about the long-term mean µt from two sources. The first source is to

collect the information from past realizations of short-run productivity shocks embed in the

firm’s output for the inference of µt. On the other hand, the firm may receive a signal st that

contains true information about the long-run productivity shock plus noise, which takes the

following form in continuous time:

dsit = dZµ
t +

1√
Φi

dZs
t , (7)

where the signals dsit are uncorrelated across n and independent of any other shocks in the

economy. That is, dZx
t , dZµ

t , dZit and dZs
t are independent standard Brownian motions. In

particular, idiosyncratic shocks, dZit, and signal shocks, dZs
t ,) are independent to aggregate

shocks (i.e., dZx
t or dZµ

t ), respectively. I assume that firms with different cash-based operating

profitability have heterogenous loadings on signal shocks, as captured by the parameter Φi.

For this assumption, I present some supportive evidence documented in Section 2.2 and 2.3.

Specifically, Φis are assumed to be positively proportional to firms’ cash-based profitability,

11The similar adjustment cost specification to model firm investment decisions refer to Abel and Eberly
(1993), Abel and Eberly (1997), Erickson and Whited (2000), Zhang (2005), Liu, Whited, and Zhang (2009),
Clementi and Palazzo (2019), and among others.
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are drawn from a uniform distribution on the interval [Φmin; Φmax] at time 0, and then remain

unchanged.

Fit denotes the information set of the firm i at time t. Conditional on its information

set, the firm forms beliefs about the unobservable long-term mean µt. I refer to the posterior

mean of µt, µ̂it ≡ E[µt | Fit], and to the posterior variance of µt. ζ it ≡ E[(µt− µ̂it)2 | Fit] (i.e.,

the mean squared error). The standard Kalman-Bucy filtering theory, according to Liptser

and Shiryaev (2013), implies that the distribution of µt conditional on Fit is Gaussian with

mean µ̂it and variance ζ it.

The resulting posterior distribution of µt is also normally distributed, as shown in Propo-

sition 1 and its corollary, which characterize firm i’s learning problem as follows.

Proposition 1. The posterior mean, µ̂it, evolves as

dµ̂it = ρµ(µ̄− µ̂it)dt+
(ρxζ it
σx

)
dẐx

it + σµ

√
Φi

1 + Φi

dẐs
t , (8)

where dẐx
it = dZx

t +
(
ρx
σx

)
(µt − µ̂it)dt denotes the incremental component of the short-run

productivity shocks, and
(√

1+Φi

Φi

)
dẐs

t ≡ dZµ
t + 1√

Φi
dZs

t is a scaled version of the signal in

equation (7) as a standardized Brownian motion. The posterior variance ζ it satisfies the

Riccati differential equation as follows:

dζ it
dt

=
σ2
µ

1 + Φi

− 2ρµζ it −
(ρxζ it
σx

)2

. (9)

See the Proof in Section B.1 in the Internet Appendix.

Equation (8) shows that firm i’s belief about its long-run productivity µ̂it is driven by

the Brownian motion shocks dẐx
it, which reflect the innovations in the short-run productivity

dZx
t plus the difference between the unobservable long-run productivity µt and the updated

productivity µ̂it. Since the signals shocks are independent of other shocks in the economy (i.e.,

dZx
t and dZa

t ), the innovations dẐs
t represent signal shocks to the true value of the aggregate

long-run productivity. In particular, holding a higher information precision Φi, firm i leans

to learn from these signal shocks and shapes its belief about the long-run productivity. In

addition, more precise information suggests a lower posterior variance and a lower weight

learn from short-run productivity shocks. Both short-run productivity and signal shocks

command a risk premium in equilibrium; However, since firms with different information

precision have heterogeneous exposures to short-run and signal shocks, they exhibit different

risk compensations in equilibrium.

From now on, I replace the steady-state posterior variance ζ i in the model economy to
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keep the stationarity. In particular, such a replacement allows me to compute the stationary

solution for the instantaneous variance of the posterior mean µ̂it, as summarized in Corollary

1. The comparative statics with respect to firm i’s information precision Φi is presented in

the following intuitive implications:

Corollary 1. The instantaneous variance of the posterior mean is given by:

V ar[(dµ̂it)
2] = σ2

µ − 2ρµζ i, (10)

which is strictly increasing in Φi (i.e., ∂V ar[(dµ̂it)
2]/∂Φi > 0).

See the Proof in Section B.2 in the Internet Appendix.

First, firm i with a higher information precision (i.e., a higher Φi) features higher volatility

and acts as a risk exposure amplification mechanism. Because the volatility of µ̂it is a

decreasing function of Φi, firm i’s exposure to common productivity shocks increases with

information precision. The upper bound of information precision is the full information

case. In the extreme case as Φi goes to infinity, firm i then has a complete picture about

the long-run productivity µt without uncertainty, and the posterior variance ζ i collapses to

zero. At this moment, the posterior mean shares the same instantaneous volatility with the

unobservable µt and reaches the instantaneous volatility of the unobserved process σ2
µ. The

intuition is that, when firms are uncertain about their long-run productivity shocks, more

information allows them to take better advantage of aggregate technological progress, and

therefore they feature an amplified exposure to aggregate shocks.

Second, better information leads to a higher level of productivity. The intuition is that

firm i with a higher information precision is more aggressively updated and able to take bet-

ter advantage of aggregate productivity shocks, and µ̂it, therefore, attain a higher level of

productivity. Taking these together, when firms cannot perfectly observe their exposure to

long-run productivity shocks, information precision allows them to utilize the aggregate tech-

nological progress, and therefore they attain a higher level of productivity and amplifies the

exposure to aggregate shocks.

More importantly, the following lemma shows that the realized log marginal product of

capital dispersion is decreasing in Φi:

Lemma 1. The partial derivative of the realized log(MPKi) dispersion (cross-sectional vari-

ance) with respect to information precision Φi is negative:

∂

∂Φi

Var
[

log(MPKi)
]
< 0 (11)

See the Proof in Section B.3 in the Internet Appendix.
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This paper studies the implications of different information precision on the cross-section

of firms. Therefore, I do comparative statics with respect to information precision Φi. The

interpretation of the model implications from the above lemmas is as follows. As firms with

more precise information acquire better knowledge about their productivity, they can better

allocate capital across each other. According to Lemma 1 I can show that the realized

MPK dispersion across firms decreases with respect to information precision. Apparently,

as the information precision increases, capital misallocation decreases. In Section 2.2, I

document a negative empirical correlation between cash-based operating profitability and

capital misallocation. This evidence is consistent with the theoretical prediction in Lemma

1 and supports my key model assumption that low cash-based operating profitability firms

contain less information about their exposure to common productivity shocks than their

counterparts.

3.2.1 Aggregation of Information

My model economy features filtered short-run productivity and signal shocks, both of which

contain the aggregate information with heterogeneous loadings as shown in Proposition 1.

In Section 3.2.1, I present the result of the aggregation of information. Given the aggregate

information, investors can determine the individual firm-level stock valuation and expected

return by using the pricing kernel, as presented in Section 3.3.1. The aggregation of infor-

mation at time t summarized in the pricing kernel is shown in the following Lemma.

Lemma 2. The filtered short-run productivity aggregate signal shock is given by

dẐx
t = dZx

t +
(ρx
σx

)
(µt − µ̂t)dt, (12)

and

dst =

∫
dsitdi =

(
√

1 + Φ

Φ

)
dẐs

t . (13)

See the Proof in Section B.4 in the Internet Appendix.

3.3 Asset Prices

In this section, I use the following steps to study the asset pricing implications of the model

economy. First, I show the optimal investment and how stock valuations depend on short-

productivity and updated long-run productivity. Second, I decompose firms’ risk premia into

the risk compensations to these two shocks, respectively, and study that the heterogeneity

in firms’ information precision translates into the cross-sectional difference in expected stock
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returns with respect to short-productivity and signal shocks.

3.3.1 Stock Valuation and Optimal Investment

Let πt denote the state price of density. For simplicity, I assume that the aggregate short-

productivity and signal shocks (i.e, dẐx
t and dẐs

t ) have constant constant prices of risk, λx

and λµ, respectively, and the risk-free rate rf is also constant. Then the stochastic discount

factor (SDF) in this economy evolves stochastically according to:

dπt
πt

= −rfdt− λxdẐx
t − λµdẐs

t , (14)

where the stochastic discount factor in equation (14) is motivated by the general equilibrium

model with short- and long-run productivity shocks in Ai (2010), Ai, Croce, and Li (2013), Ai,

Croce, Diercks, and Li (2018), and Li, Tsou, and Xu (2019). Both shocks endogenously affect

the representative household’s consumption stream, and hence they are priced in equilibrium.

For the model simplicity and tractability, I restrict the interest rate and the prices of risk to

be constant. Such a setting refers to the literature of investment/production-based model on

cross-sectional return predictability (e.g., Zhang (2005), Zhang (2005), Belo and Lin (2012),

Eisfeldt and Papanikolaou (2013), Kogan and Papanikolaou (2014), Lin, Palazzo, and Yang

(2019), and among others.)

Firm i’s objective is to maximize the expected discounted summation of future cash flows,

net of investments, and cost. That is, the firm’s investment decisions are based on a trade-off

between the market value of additional capital from its investment and the accompanying

adjustment cost. The following proposition states the equilibrium optimal firm investment

policy and the stock valuation:

Proposition 2. The stock valuation value of firm i is defined as

V (ait, xt, µ̂it, Kit) = Max
Is

Et

[∫ ∞

t

πs
πt

(Yis − Iis −Ψ(Iis, Kis)︸ ︷︷ ︸
Dis

)ds

]
, (15)

where the optimal investment is given by

Iit
Kit

= − 1

χ
+

1

χ
q(ait, xt, µ̂it). (16)

In the model, I assume the shadow value of capital, marginal q, is equal to average q,

V (ait, xt, µ̂it, Kit) = q(ait, xt, µ̂it)Kit. (17)
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See the Proof in Section B.5 in the Internet Appendix.

In equation (15), Dit denotes firm i divided at time t and is regarded the cash flow rate of

firm i generated from production. The time-t stock valuation of firm i, V (ait, xt, µ̂it, Kit), is

equal to the present value of firm i cash flows valued by using the stochastic discount factor.

Holding the condition of constant returns to scale in both production and adjustment cost,

as shown in Hayashi (1982), the firm’s marginal q equals to its average q, and, therefore, I

conjecture the firm’s stock valuation as the composition of the marginal q scaling by capital

stock Kit. The firm’s marginal q is increasing in both the level of the firm-specific productivity

ait, the level of the aggregate short-run productivity xt, and the level of the updated long-run

productivity µ̂it, respectively.

The optimal investment policy stems from the first-order condition requiring firm i to

the investment until the marginal benefit of investment, as measured by its q, is equal to its

marginal cost. Firm i’s investment rate (i.e., Iit/Kit) equals its q minus one normalized a

constant when the investment irreversibility is binding. The investment depends positively

on firm i’s q and negatively on its cost of capital adjustment.12 Supposed that firm i with

low productivity, said its marginal q below to one, is better off disinvesting by selling rather

than expanding its production scale. As the result, the optimal investment rate is negative

as disinvestment.

Finally, firms learn about the unobservable long-run productivity growth µt and form their

beliefs µ̂it according to signals that contain true information about the aggregate long-run

productivity. When firm i features higher information precision, its q becomes more sensitive

to innovations from both short-run productivity and signal shocks. Both these effects amplify

the sensitivity of firm i’s q(ait, xt, µ̂it), as well as the co-movement of investment and q. Such

the theoretical prediction is consistent with the empirical result when I present in Section

4.2.

3.3.2 Risk and Risk Premia

An application of Ito’s Lemma on firm i’s stock value implies that the dynamics of firm i’s

stock returns are presented in the following proposition.

Proposition 3. Firm i’s realized stock returns at time t follow the process:

Ditdt+ dVit
Vit

= Et

[
Ditdt+ dVit

Vit

]
+ βa,itdZ

a
it + βx,itdẐ

x
it + βµ,itdẐ

µ
it, (18)

12The rearrangement of the equation (16) shows Iit
Kit

= 1
χ

[
q(ait, xt, µ̂it)− 1

]
.
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in which firm i’s risk exposures to firm-specific, short-run productivity, and signal shocks are

βa,it, βx,it, and βµ,it, respectively. The functional form of firm i’s risk exposure with respect

to these shocks refers to the Internet Appendix.

See the Proof in Section B.6 of the Internet Appendix.

In equation (18), I decompose firm i’s realized stock returns into the risk exposures to

firm-specific productivity shocks, βa,i, to short-run productivity shocks, βx,it, and to signal

shocks, βµ,it. The first term of firm i’s on the right-hand side of the equation (18) shows that

firms in the economy face the different exposure σa to firm-specific shocks. The second term

in equation (18) determines the firm i’s exposure to short-run productivity shocks. Third,

the last term βµ,it captures firm i’s exposure to signal shocks, in which firms with more

information precision are able to learn true information about aggregate long-run productivity

from signal shocks. As a result, their realized returns present higher loadings on signal shocks.

In equilibrium, asset risk premia are determined by factor loadings times the price of risk.

That is, risk premia are determined by the Euler equation that characterizes the covariance

of a firm’s returns with the SDF. Combining the equation characterizing stock returns in

equation (18) with the SDF in equation (14) yields the conditional risk premium as the

compensation to hold firm i’s stocks:

Et

[
Ditdt+ dVit

Vit

]
− rfdt = −Covt

[
Ditdt+ dVit

Vit
,
dπt
πt

]

= βx,itλxdt+ βµ,itλµdt. (19)

In equation (19), I show that firm i’s risk premia are determined by its exposure to short-run

productivity and signal shocks, respectively. The first term captures the risk premium of

short-run productivity shocks in an amplified manner when I introduce the learning mech-

anism, as shown in Section B.6 in the Internet Appendix. The risk premium attributing

to signal shocks is in the second term of equation (19). As summarized in Proposition 2

and Proposition 3, upon a positive short-productivity or signal shock, stock valuation rises

exactly when the marginal utility and thus the SDF is low. Put together, investors demand

a positive compensation for their exposures to such a short-productivity or signal shock.

Finally, the heterogeneity in expected returns in the cross-section is determined by hetero-

geneous exposures to both shocks, βx,it and βµ,it, the properties of which is summarized by

Corollary 2 as below.

Corollary 2. Firm i’s expected return depends on Φi, which is the information precision to

18



learn for the unobservable long-run productivity shock.

∂

∂Φi

(
βx,itλx + βµ,itλµ

)
> 0. (20)

See the Proof in Section B.7 of the Internet Appendix.

In equation (20), I show that firm i with a higher Φi exhibits a larger sensitivity than does

firm j with a lower Φj in expected stock returns. This underlying difference in Φi plays an

essential role in determining heterogeneous responses to aggregate shocks and in formalizing

the cross-sectional difference in expected stock returns.

More importantly, the heterogeneous risk compensation for productivity risks, especially

for long-run productivity shocks, is responsible for the cross-sectional difference in expected

returns among firms with different information precision. As shown in Corollary 2, firm i’s

risk premium with respect to the short-run productivity and signal shock positively depends

on its information precision Φi, especially for the latter. As a positive realization of a signal

shock, stock valuations of high Φ firms with high information precision rise more than do

those of low counterparts. Heterogenous responses to signal shocks, which contain true infor-

mation about aggregate long-run productivity risks, translate into a cross-sectional difference

in expected stock returns. My model predicts that high-cashed-based-operating-profitability

firms contain more precise information and, thus, carry higher expected returns. This predic-

tion is strongly supported by a statistically significant high-minus-low return spread among

portfolios sorted on cash-based operating profitability. I call this return to spread the cash-

based operating profitability premium.

The cross-sectional asset pricing implication is captured in the following proposition.

Proposition 4. Suppose that there are two firms that differ in information precision in the

economy: one is a high information precision firm, while the other is a low information

precision firm. According to equation (17), two firms’ expected stock returns are denoted as

Et

[
DHtdt+ dVHt

VHt

]
− rfdt = βx,Htλxdt+ βµ,Htλµdt, (21)

and

Et

[
DLtdt+ dVLt

VLt

]
− rfdt = βx,Ltλxdt+ βµ,Ltλµdt, (22)

respectively. The long-short portfolio of high versus low information precision firms’ expected
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stock returns denotes

Et

[
DHtdt+ dVHt

VHt
− DLtdt+ dVLt

VLt

]
= [βx,Ht − βx,Lt]λxdt+ [βµ,Ht − βµ,Lt]λµdt. (23)

See the Proof in Section B.8 of the Internet Appendix.

I make several observations for the long-short portfolio in equation (23) as follows. First,

βx,it and βµ,it are the risk exposures to short-productivity and signal shocks. When there

is a negative realization of these shocks, especially for the signal shock, stock valuations for

all firms fall, but the stock valuation of firm H with high ΦH (high information precision)

drops more than does that of firm L (low information precision). Therefore, firm H is more

sensitive to signal shocks. Given the positive price of risk with respect to productivity and

signal shocks (λx > 0 and λµ > 0), investors demand a positive premium to hold high

information precision firms H over low information precision firms L. In sum, the cash-based

operating profitability premium compensates investors to hold high information precision

stocks in terms of higher exposure to short-run productivity and signal shocks.

3.4 Cash Flow Duration

The learning mechanism in my model economy also affects the timing of cash flow, which is

measured by cash flow duration. In this subsection, I provide a framework to understand my

model’s implication on the timing of cash flows.

Firm i’s dividend claim or dividend strip is a security that pays Ψis at time s per unit of

capital, in which Ψis is equal to firm i dividend payout Dit normalized by its capital Kis. Its

normalized dividend claim at time t is denoted as: Πs
it = Et

[
πs

πt
Ψis

]
. In the model, I define

the normalized dividend payout as the marginal product of capital minus investment rate

and an normalized adjustment cost (i.e., Ψit = MPKit − Iit
Kit
− Φ( Iit

Kit
)).

I further define the term distribution of firm i value as:

ωsit =
Πs
it

qt
. (24)

That is, the fraction of maturity-s dividend strip’s value in total firm i valuation, and firm i’s

current valuation is equal to the sum of the normalized dividend strip value at all maturities,

qit =
∑∞

s=1 Πs
it. Therefore,

∑∞
j=s ω

s
it = 1.13 Under such notations, firm i’s Macaulay duration

13For the illustrative purpose, I start from the discrete-time framework. The remaining analysis keeps
focusing on the continuous-time framework.
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Mit can also be expressed as:

Mit =
∞∑

s=1

s ωsit. (25)

Notably, I implement some transparent reformulation of the above equation (25) and then

obtain an equivalent of firm i’s Macaulay duration Mit, which can be demonstrated in the

following proposition.

Proposition 5.

M(ait, xt, µ̂it)q(ait, xt, µ̂it) = Et

[∫ ∞

t

s
πs
πt

Ψisds

]
, (26)

for which ∂Mit

∂ait
< 0, ∂Mit

∂xt
< 0, and ∂Mit

∂µ̂it
< 0.

See the Proof in Section B.9 of the Internet Appendix.

In equation (26), I show negative sensitivities of firm i’s Macaulay duration with respect

to the firm-specific productivity ait, the short-run productivity xt, and the long-run pro-

ductivity µ̂it. More importantly, the negative sensitivity (i.e., ∂Mit

∂µ̂it
< 0) to the long-run

productivity suggests that firms with higher information precisions feature shorter cash flow

durations, according to the learning mechanism significantly that affects the timing of cash

flows. Intuitively speaking, firms with high cash-based profitability have shorter cash flow

duration than those with high cash-based profitability. As shown in the previous subsections,

these firms possess higher information precision and capital reallocation efficiency, attain a

higher level of productivity, pay higher cash flows from the beginning, and allocate greater

value weight at the short maturity when compared with their counterparts; therefore, they

give shorter cash flow duration, as I show in Proposition 5.

3.5 Calibration and Quantitative Model Predictions

In this subsection, I calibrate my model at the annual frequency and evaluate its ability to

replicate key moments of both real quantities and asset prices at the aggregate level. More

importantly, I investigate its performance in terms of quantitatively accounting for the cash-

based operating profitability premium in the cross-section of expected stock returns. Real

quantities refer to the aggregate investment rate and Tobin’s q, while the aggregate asset

price refers to the equity premium.

In Table 4, I present a group of calibrated parameter values in my model. I adopt the

following calibration procedure to determine a set of sensible parameters. All parameters

are grouped into four categories. I determine parameters in the first and second category

by following the previous literature; These parameters are in line with those in Pástor and
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Veronesi (2006) and Andrei, Mann, and Moyen (2019). I determine parameters in the first

and third category by matching a set of first moments of quantities to their empirical coun-

terparts, including the average values and the cross-sectional distribution of the marginal

product of capital, the investment rate, and Tobin’s q. The proportional adjustment cost for

investment χ is set to match 0.04, the median of the aggregate investment rate in my data.

I set the depreciation rate of capital to 10%, to be consistent with commonly used values for

the depreciation rate. When I determine parameters in the fourth category, I do not follow

an exact one-to-one mapping to the first moment of a specific item in the data; instead, I

determine these particular parameters by jointly matching to identify moments in the data:

the parameters of the pricing kernel (i.e., λx = 0.15 and λµ = 0.40) are picked to approxi-

mately match the first and second moment of excess returns on the market portfolio. I set

the interest rate rf to 3%, which is close to the historical average real risk-free rate according

to Campbell and Cochrane (1999). Last but not least, I do not use any information about

the cross-sectional variation in portfolio returns when I use it in my calibration procedure.

Instead, I compare the cross-sectional portfolio returns between the data and my simulation

to follow my model implication.

[Place Table 4 about here]

I also evaluate the quantitative performance of the model at the aggregate level. In

Table 5, I show that my model is broadly consistent with the key empirical features of real

quantities and asset prices. With respect to real quantities and asset prices, my model

produces comparable results to the data in my sample.

[Place Table 5 about here]

Next, I study the cash-based operating profitability premium at the cross-sectional level.

For the purpose of cross-sectional analysis, I make use of several data sources at the micro-

level, including (1) firm-level balance sheet data from the Compustat quarterly files and (2)

monthly stock returns from CRSP. In Section A.1, I provide additional details regarding my

data sources and constructions. Specifically, I set the distribution of information precision

Φi between 0 and 3, and then simulate 5, 000 firms. In Table 6, I report the average excess

returns, marginal product of capital, investment rate, Tobin’s q, and cash flow duration

across different Φi, and then compare them with my data.

[Place Table 6 about here]

I document several cross-sectional implications in terms of average returns and firm char-

acteristics in Table 6. First, my model can quantitatively replicate the pattern in the data
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by generating the upward sloping marginal product of capital, investment rate, Tobin’s q

but the downward sloping cash flow duration across five quintile portfolios sorted by infor-

mation precisions.14 Second, I use Table 6 to show that my model can generate a cash-based

operating profitability premium (i.e., the return spread in the high-minus-low portfolio) as

sizable as 4.24%, which is comparable to the 4.55% I obtain from my data in Section 2.1. To

generate the sizable return spread, I identify a key mechanism: high-based-based-operating

profitability firms contain more precise information about aggregate long-run productivity

shocks, so they face higher risk exposures to these shocks. Hence, investors demand higher

expected returns to hold high-based-based-operating firms’ stocks.

4 Testable Model Implications

In this section, I examine several key testable implications to support information and

learning explanation. First, I document the negative relation between cash-based operat-

ing profitability and cash flow duration. Second, I also investigate the improvement of the

investment-q regression when firms contain more precise information. Second, firms with

high cash-based profitability contain more precise information and, therefore, these firms’

productivity growth exhibit higher co-movements with the aggregate productivity growth.

Also, their payouts feature higher sensitivities to aggregate productivity shocks. Third, I

then implement the generalized method of moments (GMM) test to show that the two-

factor model, including the short- and long-run productivity shock, is positively priced in

the cross-section of cash-based-operating-profitability-sorted portfolios. Together with the

finding that high-cash-based-operating-profitability firms’ stock returns are more exposed to

both the short- and long-run productivity shock.

4.1 Cash Flow Duration in the Cross-Section

One implication of the learning mechanism in my model is that high cash-based operating

profitability firms feature higher information precision and capital reallocation efficiency, pay

higher cash flows from the beginning, and have higher value weight at the short maturity

when compared with their counterparts; therefore, they give shorter cash flow duration based

on the definition of cash flow duration in equation (26). In this subsection, I directly test

this model prediction by showing the supporting evidence on the negative relation between

cash-based operating profitability and cash flow duration.

14The cash flow duration in my quantitative exercise focuses on the measure of cash flow duration according
to Dechow et al. (2004) and Weber (2018).
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In Panel C of Table 1, I show the cash flow duration of each portfolio sorted on cash-

based operating profitability. Appendix A.3 provides detailed construction of the cash flow

duration.15 As shown in Panel C of Table 1, firms with lower cash-based profitability feature

longer cash flow duration than their counterparts. Cash flow duration decreases in portfolios

sorted on cash-based operating profitability across three different measures of cash flow du-

ration in the literature. Such the finding is consistent with the testable implication generated

by my model. Intuitively speaking, less profitable firms are lower in average productivity and,

therefore, possess lower dividend payouts. As time passes, they obtain better information

and improve their efficiency in terms of resource allocations; meanwhile, their productivity

and dividend payouts increase. Therefore, these firms have low cash flows at the short end

and high cash flows at the far end.

4.2 Investment and Tobin’s q

Motivated by the evidence, as documented in Andrei, Mann, and Moyen (2019), that firms

with more precise information are exhibiting a greater comovement between investment and

Tobin’s q, I provide additional empirical facts to explore the learning mechanism by inves-

tigating the joint link between investment rate and Tobin’s q. To do so, I then implement

a standard procedure and sort firms into quintile portfolios based on these firms’ cash-based

operating profitability within Fama and French (1997) 30 industries. To measure the perfor-

mance of the investment-q regression for firms with higher cash-based profitability, I estimate

the sensitivity of Tobin’q (i.e., βq,n) with respect to investment rate by different portfolios

sorted on cash-based operating profitability (n = L, 2, ..., H) by using the following regres-

sion:

Ii,n,t
Ki,n,t−1

= β0,t + β0,i + βq,nqi,n,t + Controlsi,n,t + εi,n,t, for firms in portfolio n (27)

in which
Ii,n,t

Ki,n,t−1
denotes firm i’s investment rate in portfolio n at time t; β0,i and β0,t con-

trols for the firm and time fixed effect, respectively; and qi,n,t is firm i’s q in portfolio n.

Controlsi,n,t includes a list of control variables for firms’ fundamentals, including size, book-

to-market ratio, and cash-based operating profitability.

[Place Table 7 about here]

15In my empirical calculation, the average of the first measure of cash flow duration (i.e., duration 1)
over the whole sample is largely comparable with the mean cash flow duration in Weber (2018), although
the latter paper did not calculate the duration measure across portfolios sorted on cash-based operating
profitability. Data on the second measure of cash flow duration (i.e., duration 2) are from Andrei Gonçalves’s
website (https://andreigoncalves.com/). I thank Niels Joachim Gormsen, and Eben Lazarus for sharing
the third measure of cash flow duration (i.e., duration 3).
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As reported in Table 7, I find that the standard investment-q panel regression fares

better among firms in the high group sorted on cash-based operating profitability. The

estimated coefficient β̂q,n rises from 0.1 to 0.7, and the R2 value from the regression roughly

doubles from 0.58 to 0.81 when I move from the lowest to the highest portfolios sorted on

cash-based operating profitability. This is consistent with the learning channel as shown in

Section 2.3, and also highlights that the relation between cash-based operating profitability

and information validates the learning mechanism that high-profitability firms contain more

information about their exposure to long-run productivity shocks than low-profitability firms.

4.3 Firms’ Exposure to Aggregate Shocks

4.3.1 Productivity

To identify the contemporaneous exposure to aggregate productivity growth, I conduct a

two-step empirical procedure. First, I estimate the firm-level productivity of public traded

companies on the U.S. stock exchange, following Ai, Croce, and Li (2013) and Li, Tsou,

and Xu (2019). Estimation details refer to the Internet Appendix A.4. Second, I estimate

the exposure of firms’ productivity growth with respect to aggregate productivity growth by

different cash-based operating profitability groups (n = L, 2, ..., H) by using the following

regression:

∆ lnAi,n,t = ξ0,i + ξA,n∆ lnAt + Controlsi,n,t + εi,n,t, for firms in portfolio n (28)

in which ∆Ai,n,t denotes firm i’s productivity growth in portfolio n at time t, ξ0,i controls

for the firm-specific fixed effect, and ∆ lnAt is the growth rate of aggregate productivity as

measured by the U.S. Bureau of Labor Statistics (BLS). Controlsi,n,t includes a list of control

variables for firms’ fundamentals, including size, book-to-market ratio, investment rate, and

cash-based operating profitability.

[Place Table 8 about here]

The key coefficient of my interest, the coefficient ξA,n captures a cash-based operating

profitability group j’s specific sensitivity to the aggregate productivity growth. I report my

main findings in Table 8. The estimated coefficients (i.e., ξ̂A,n) on the aggregate productivity

growth present an upward sloping pattern from the low to the high group based on cash-

based operating profitability. These results are consistent with the learning mechanism and

also confirm the intuition that that high-profitability firms have more precise information

and, therefore, face higher exposures to the aggregate productivity growth.
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4.3.2 Payout Sensitivities

One key premise of the learning mechanism in my model is that high cash-based operating

profitability firms with more precise information take advantage of technology growth; there-

fore, their payouts are more exposed to aggregate productivity shocks. In this subsection, I

directly test this model prediction. I show the supporting evidence of the positive relation

between cash-based operating profitability and firms’ payout exposure to aggregate short-run

and long-run productivity shocks.

I proceed as follows. First, I measure firms’ payout at the quarterly frequency by us-

ing their operating income before depreciation (XINTQ), net of interest expenses (TXTQ),

income taxes (OIBDPQ), and common stock dividends (DVY-DVPQ), following Croce,

Marchuk, and Schlag (2018).

In the second step, I estimate exposures by regressing firm i’s payout normalized by its

lagged sales ratio on the short- and long-run productivity shocks, and other control variables

as follows:

Ni,t = β0,i + βsrε
x
t + βlrε

µ
t + ρNi,t−1 + βµµt−1 + Controlsi,t−1 + residt, (29)

in which I follow Ai, Croce, Diercks, and Li (2018) to construct short-run and long-run shocks

(i.e., εxt and εµt , respectively). Specifically, I project TFP growth on predictors proposed by

Bansal and Shaliastovich (2013) plus the integrated volatility of stock market returns to

identify the long-run growth component and disentangle it from short-run TFP shocks.

In the model, a linear approximation of the equilibrium dividend processes suggests the

dependence of payout on both contemporaneously short- and long- productivity shocks and

predetermined variables. For the sake of parsimony, I use the lagged values of the payout

ratio to capture the role of the endogenous state variables (i.e., capital shocks), so I may

avoid additional measurement errors. Under the null of the model, this is an innocuous

assumption.

I report my main findings in Table 9. The estimated coefficients (i.e., β̂sr and β̂lr) present

an upward sloping pattern from the low to high cash-based-operating-profitability-sorted

portfolios. Such the result is consistent with my model setting, and also highlights the fact

that the firms’ payout in the highest quintile portfolio faces significantly higher exposure to

short-run and long-run productivity shocks than do those in the lowest quintile.

[Place Table 9 about here]

In summary, payout exposures present an upward sloping pattern with respect to both

26



short- and long-run productivity shocks, which is perfectly consistent with my model impli-

cation.

4.4 Market Price and Risk Exposure

In this section, I first test the price of risk with respect to the short- and long-run produc-

tivity shock, which is positive as suggested in equation (14), and then examine cash-based-

operating-profitability-sorted portfolios’ exposure to the short- and long-run productivity

shock, respectively.

My model implies a two-factor model in which the short-run risk is the first factor and the

long-run risk is the second factor. I test the price of these two factors using the procedure

detailed in Cochrane (2005) (pages 256-257). I first specify the stochastic discount factor

(SDF) as:

SDFt = 1− λx × εxt − λµ × εµt , (30)

which specifies that investors’ marginal utility is driven by two aggregate shocks: εx is the

short-run productivity risk, and εµ is the long-run productivity risk. I aim to test λx (λµ),

which is sensitivity to εx (εµ) is proportional to the price of short-run (long-run) productivity

shock λx (λµ) in equation (14). As a comparison of the two-factor model, I also consider a

one-factor model and test the price of risk. The specification of the stochastic discount factor

denotes:

SDFt = 1− λ× RMKT (∆ lnAt), (31)

where RMKT is the market factor in the standard capital asset pricing model (CAPM), and

∆ lnAt is the growth rate of total factor productivity.

To test the price of risk, I use cash-based-operating-profitability-sorted portfolios (as

presented in Table 2) as the test assets,16 and implement the generalized method of moments

(GMM) estimation using the following moment conditions:17

E[Re
i ] = −Cov(SDF, Re

i ), (32)

which is the empirical equivalent to equation (19) of my model, but with the conditional

moments replaced by their unconditional counterparts. I essentially assess the ability of εxt

and εµt to price test assets on the basis of residuals of the Euler equation.

In addition, I follow the literature (e.g., Papanikolaou (2011), Eisfeldt and Papanikolaou

16This choice of test assets follows Papanikolaou (2011), Eisfeldt and Papanikolaou (2013), Kogan and
Papanikolaou (2014), Belo et al. (2017), and Lin et al. (2019).

17Detailed information regarding moment conditions refers to Table 10.
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(2013), and Kogan and Papanikolaou (2014)) to estimate two statistics for cross-sectional

fitting using the sum of squared errors (SSQE), mean absolute percent errors (MAPE), as

well as the J-statistic of the overidentifying restrictions of the model. An insignificant J-

statistic suggests that the null hypothesis of the pricing errors being zero is not rejected.

In Panel A of Table 10, I present the results of the one-factor (CAPM and TFP) and the

two-factor SDF model. The price of short- and long-run risk is 0.57 and 0.81, respectively,

which are both significantly positive. In terms of asset pricing errors, the SSQE of CAPM

(TFP) is 6.02 (6.03). After I introduce the long-run productivity shock to my model, the

SSQE reduces to 1.13. Moreover, the MAPE of CAPM (TFP) is 4.12 (4.25), and the MAPE

of the two-factor model is 1.96. Last, the J-test is marginally significant to reject the CAPM

model, while the J-test is statistically insignificant in the rest models. All these results

indicate that the two-factor model is sufficient to capture the cross-sectional variations in the

cash-based-operating-profitability-sorted portfolios.

[Place Table 10 about here]

In Panel B of Table 10, I present the cash-based-operating-profitability-sorted portfolios’

risk exposures (betas) to the short- and long-run productivity shock (εxt and εµt ). Exposures

to the short-run shock display a flat pattern across quintile sorted portfolios. In contrast,

I find that the high-profitability portfolio has a significantly positive loading; in addition, I

observe an increasing pattern in the betas from the low portfolio to the high portfolio. These

portfolios present an upward-sloping pattern of covariances with the empirical measure of

the long-run productivity shock. All these results thus support my model in that high-cash-

based-operating-profitability firms predict higher stock returns because they have positive

betas on the short- and long-run productivity shock that are positively priced.

5 Other Explanations for the Cash-based Operating

Profitability Premium

In this section, I first provide additional empirical evidence for the relation between cash-

based operating profitability and future stock returns. To do so, I perform several factor

regressions to show that such a positive-return relation is literally unaffected by known re-

turn factors for other systematic risks. Moreover, I implement Fama and MacBeth (1973)

regressions to examine if the positive relation between cash-based operating profitability and

stock returns is mitigated by other firm characteristics. Second, I implement double sort-

ing on size and cash-based operating profitability to confirm that the cash-based operating
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profitability premium is not driven by the size effect. In addition to aggregate short-run and

long-run productivity shocks as discussed in the previous section, I acknowledge that the

positive cash-based-profitability-return relation could also be attributed to other explana-

tions, including behavioral reasons, financial distress, and relevant risks documented in the

literature. I discuss all these possible explanations in this section.

5.1 Factor Regressions and Risk Exposures

In this subsection, I investigate the extent to which the variation in the average returns

of the profitability-sorted portfolios can be explained by exposures to standard risk factors,

including the market factor in the CAPM model, the three factors in Fama and French (1993)

(FF3), the four factors in Carhart (1997) (FF4), the five factors in Fama and French (2015)

(FF5), and the four factors in Hou, Xue, and Zhang (2015) (HXZ).18 To adjust for risk

exposure, I perform time-series regressions of profitability-sorted portfolios’ excess returns

on the market factor (MKT) as the CAPM model in Panel A, on Fama-French three factors

(MKT, the size factor-SMB, and the value factor-HML) in Panel B, on Carhart four factors

(MKT, SMB, HML, and the momentum factor-UMD) in Panel C, on the Fama and French

(2015) five factors (MKT, SMB, HML, the profitability factor-RMW, and the investment

factor-CMA) in Panel D, and on the Hou, Xue, and Zhang (2015) q-factors (MKT, SMB,

the investment factor-I/A, and the profitability factor-ROE) in Panel E, respectively. Such

time-series regressions enable us to estimate the betas (i.e., risk exposures) of each portfolio’s

excess return on various risk factors and to estimate each portfolio’s risk-adjusted return (i.e.,

alphas). These betas, together with annualized alphas (in %), are reported in Table 11.

[Place Table 11 about here]

First, as I show in Table 11, the positive profitability-return relation cannot be explained

by the market factor in the CAPM model. The market betas are flat across quintile portfo-

lios sorted on cash-based operating profitability, suggesting that high-profitability firms do

not face higher market risk exposure. In addition, the intercept (i.e., alpha or risk-adjusted

return) of the high-minus-low portfolio is 5.55% with a t-statistic of 3.20, which is both sta-

tistically and economically significant. Second, in Panels B to E, the risk-adjusted returns of

the cash-based-operating-profitability-sorted high-minus-low portfolio remain large and sig-

nificant, ranging from 4.48% for the HXZ model in Panel E to 7.67% for the FF3 model in

Panel B, with t-statistics well above 3. Lastly, the high-minus-low portfolio carries signifi-

18The Fama and French factors are downloaded from Kenneth French’s data library (http://mba.tuck.
dartmouth.edu/pages/faculty/ken.french/data_library.html), and the HXZ factors are downloaded
Global-q data library (http://global-q.org/index.html)
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cant loadings on most risk factors except the investment factor. In summary, results from

factor regressions in Table 11 suggest that the cross-sectional return spread across portfolios

sorted on cash-based operating profitability cannot be eliminated by existing risk factors.

Hence, common risk exposure cannot explain the positive profitability-return relation that I

document.

I then examine how the time-series pattern of the risk-adjusted returns with respect to

the Fama-French five-factor model and HXZ q-factor model, respectively, affects the return

on the high-minus-low portfolio, which is my proxy for the cash-based operating profitability

premium. Figure 1 plots the cumulative, risk-adjusted returns of the high-minus-low portfolio

from July of 1980 to June of 2018. The positive profitability-return relation that I find appears

to be a fairly persistent pattern across most years and increasing during economic downturns

(denoted by economic recessions in shaded areas).

[Place Figure 1 about here]

5.2 Fama-MacBeth Regressions

I further investigate the predictive ability of cash-based operating profitability for stock

returns using Fama-MacBeth cross-sectional regressions (Fama and MacBeth (1973)). This

analysis allows me to control for an extensive list of firm characteristics that predict stock

returns and to further examine whether the positive profitability-return relation is driven

by other known predictors at the firm level.19 I conduct cross-sectional regressions for each

month from June of 1980 to July of 2018. In each month, monthly returns of individual stock

returns (annualized by multiplying 12) are regressed on the cash-based operating profitability

and different sets of control variables that are known 6 months prior to portfolio formation,

except market capitalization, and industry fixed effects.20 Control variables include the

natural logarithm of market capitalization (Size), the natural logarithm of book-to-market

ratio (B/M), investment rate (I/K), return on equity (ROE), and industry dummies based on

Fama and French (1997) 30 industry classifications. All independent variables are normalized

to a zero mean and one standard deviation after winsorization at the 1st and 99th percentiles

to reduce the impact of outliers.

[Place Table 12 about here]

19Fama-MacBeth cross-sectional regressions provide a reasonable cross-check for the portfolio tests, as it
is difficult to include multiple sorting variables with unique information about future stock returns by using
a portfolio approach.

20Market capitalization is known at the end of every March, June, September, and December.
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In Table 12, I report the average slopes (i.e., coefficient estimates) from monthly regres-

sions, and the corresponding t-statistics are the average slopes divided by their time-series

standard errors.21 I annualize the slopes and standard errors. My results support the re-

turn predictive ability of cash-based operating profitability. In Specification 1, cash-based

operating profitability significantly and positively predicts future stock returns with a slope

coefficient of 3.00 with a t-statistic of 4.05. This finding implies that a one-standard-deviation

increase in cash-based-operating profitability leads to a significant increase of 3.00% in the

annualized stock return. As the difference in average cash-based operating profitability be-

tween two extreme quintile portfolios is approximate to 1.05 standard deviations, the slope

of 3.00 in Specification 1 implies a return spread of 3.15% per annum, which approximately

accounts for 75% of the annualized high-minus-low portfolio return of 4.55% as I report in

Panel A of Table 2.22

From Specification 2 to 5, cash-based operating profitability positively predicts stock

returns with a statistically significant slope when I further control for variables known to

predict stock returns in the cross-section, including size, book-to-market ratio, investment

rate, and return on equities (ROE). Additionally, Specification 4 highlights that the predic-

tive ability of cash-based operating profitability is not subsumed by ROE. When I put all

control variables together in Specification 6, the slope of the coefficient on cash-based oper-

ating profitability is still significantly positive. Overall, Table 12 suggests that the positive

profitability-return relation cannot be attributed to other known predictors in the literature

and confirms that cash-based operating profitability has a unique return predictive power.

5.3 Double Sorting on Size

To alleviate the concern that the return predictability I document is driven by firm size, I

conduct two-way independent sorts for cash-based operating profitability and size. At the

beginning of January, April, July, and October, I assign firms into big (B) and small (S)

groups based on their market capitalization relative to industry peers and group firms into

quintile portfolios (from low to high) based on their cash-based operating profitability relative

to industry peers. I then track the value-weighted returns on each portfolio over the next

three months. I report the annualized portfolio returns by multiplying 12 (and t-statistics in

parentheses) in Table 13.

[Place Table 13 about here]

21My standard errors are based on Newey and West (1987).
22The Fama-MacBeth regressions weigh each observation equally and thus place substantial weight on

small firms. However, my finding for the cash-based profitability premium from sorted portfolios is mainly
based on value-weighted portfolios.
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If the size is responsible for the cash-based operating profitability effect, then I would

expect the return spread to concentrate on the small or big group. However, as shown in

Table 13, high-profitability firms still outperform low-profitability ones in stock returns for

both big and small groups. Moreover, the returns on the high-minus-low portfolios are both

economically and statistically significant among big and small firms. Consequently, a positive

profitability-return relation is not completely driven by the size effect.

5.4 Behavioral Explanations

5.4.1 Institutional Ownership

In this subsection, this paper aims to disentangle the heterogeneous information precision to

update the aggregate long-run productivity in the main analysis from the alternative short-

sale constraint explanation by using institutional ownership. The idea is that institutional

ownership is widely used as a proxy for short-sale constraints in the literature, according

to Nagel (2005) and Asquith et al. (2005). It has been studied in the short-sale constraint

literature that stocks with higher institutional ownership are less subject to short-sale con-

straints as institutional investors are important suppliers of shares to borrow for short selling.

Supposed that short-sale constraint is the driving force that explains the heterogeneity in the

information precision story, one would expect the information precision effect to be stronger

among stocks with lower institutional ownership but to dampen or even disappeared among

stocks with higher institutional ownership.

To test this explanation, I calculate the institutional investors’ ownership before exam-

ining whether the profitability-return relation varies across different types of institutional

ownership. If the explanation based on institutional ownership holds, I expect that the

profitability-driven return predictability will be absorbed by institutional investors’ owner-

ship. In particular, I collect quarterly institutional ownership data at the end of each quarter

from the Thomson Reuters Institutional Holdings (13F) database, which keeps track of the

13F filings of professional money managers. An institutional investment manager with in-

vestment discretion over 100 million or more is required to file Form 13F with the SEC within

45 days at the end of a calendar quarter on the number of shares they hold of stocks. Insti-

tutional investors include investment advisers, banks, insurance companies, broker-dealers,

pension funds, etc. A firm’s institutional ownership is calculated as the ratio of the summa-

tion of its shares held by institutional investors to total shares outstanding in a given quarter.

With the alternative explanation by the short-sale constraint, I would expect the information

precision effect to get weaker with higher institutional ownership since institutional ownership

is associated with less binding short-sale constraints.
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I form double-sorted portfolios based on firms’ cash-based profitability and institutional

ownership. In particular, I independently sort firms into two portfolios based on their in-

stitutional ownership, and into five portfolios based on their cash-based profitability at the

beginning of every January, April, July, and October, all relative to industry peers. I then

calculate the value-weighted returns on each portfolio over the next three months. I present

the average returns of my double-sorted (2 by 5) portfolios in Panel A of Table 14. I include

t-statistics in parentheses and annualize the portfolio returns by multiplying them by 12.

In the high-intuitional-ownership group, the return spread sorted on cash-based operating

profitability amounts to 3.07% and is significant at the 1% level. On the other hand, in the

low-institutional-ownership group, the return spread based on two extreme portfolios sorted

on cash-based operating profitability amounts to 6.96% that is significant at the 5% level with

a t-statistic of 2.09. As the profitability-related return predictability is not eliminated when

I control for institutional ownership, the cash-based operating profitability premium can-

not be attributed to the difference in short-sale constraint proxied by institutional investors’

different shareholdings.

[Place Table 14 about here]

5.4.2 Under-reaction to Earnings Report

It is well documented in the literature that investors may under-react to market news due

to limited attention or lags in information diffusion.23 It is possible that firms with high

cash-based operating profitability are subject to great pressure from analysts and activist

investors and are thus more likely to decorate their profitability in the next period. If

high-profitability firms’ window dressing is under-reacted (underestimated) by investors who

are myopic to pick stocks and rely on firms’ temporary performance, their stock prices may

increase in the future and will result in the profitability-return relation that I find. To further

examine this possibility, I implement the two-way portfolio sorting based on firms’ current

and future cash-based operating profitability. At the beginning of every January, April, July,

and October, I first sort stocks into five portfolios (from low “L” to high “H”) based on firms’

cash-based operating profitability (i.e., current profitability). Then, the firms in the highest

quintile portfolios are further sorted into two portfolios based on their cash-based operating

23Prior studies suggest that investors tend to underreact to new information (e.g., Bernard and Thomas
(1990)), especially for new but complex information (e.g., You and Zhang (2009). For example, in the
innovation literature, the evidence suggests that investors tend to over discount the cash flow prospects of
R&D-intensive or patenting firms owing to high uncertainty and complexity associated with innovations or
fail to take into account the benefits of innovation due to limited attention, which results in underpricing
of innovation (see, e.g., Hall (1993); Lev and Sougiannis (1996); Aboody and Lev (1998, 2000); Chan et al.
(2001); and Hirshleifer et al. (2013, 2017)).
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profitability in the next quarter (i.e., future profitability):24 the HL portfolio includes firms

with future cash-based operating profitability below the median of the high group and the

HH group includes those with future cash-based operating profitability above the median

of the high group. If the under-reaction explanation is correct, then the profitability-return

relation should only exist in the HL group but not in the HH group.

I then calculate the value-weighted portfolio returns of these two portfolios for the follow-

ing 12 months and report their time-series average returns in the second and third columns of

Panel B of Table 14. I include t-statistics in parentheses. I also report the average portfolio

return in the lowest quintile portfolio (L), and also present the return difference between the

HL and L groups and the return difference between the HH and L groups. My empirical

results show that although the former (HL-L) is significantly positive on average (4.18% with

a t-statistic of 2.35), the latter (HH-L) is also significantly positive on average (5.01% with

a t-statistic of 2.51). In other words, even high-cash-based-operating-profitability firms that

do not improve their cash-based operating profitability in the future still provide significantly

higher returns than low-cash-based-operating-profitability firms. Hence, the under-reaction

explanation is less likely to explain the cross-sectional variation in stock returns due to cash-

based operating profitability.

5.4.3 Retail Investors’ Behavioral Bias

Different from institutional investors who are more rational and have more complete infor-

mation, retail investors may be more subject to behavioral bias (e.g., Daniel et al. (1998),

Barberis et al. (1998), and Hong and Stein (1999), among others.). For example, retail

investors may be sensitive and overreact to news about some local news (Ivković and Weis-

benner (2005) and Seasholes and Zhu (2010)) and buy (sell) all their stocks at a huge pre-

mium (deep discounts). If such overreaction explains the cash-based operating profitability

premium, then I expect the positive profitability-return relation to existing among stocks

that experience significant jumps (drops) in the shares of retail investors. To examine this

explanation, I first define the shares of retail investors in percentage as one minus the shares

owned by institutional investors in percentage at the end of each quarter. At the beginning

of every January, April, July, and October, I first sort all stocks with cash-based operating

profitability into three portfolios by 30-40-30 based on the changes in retail investors on the

report date of quarterly earnings (RDQ). The high (low) group includes stocks that experi-

ence the strongest increase (decrease) in retail investors’ shares. Then, within each group, I

further sort stocks into quintile portfolios based on firms’ cash-based operating profitability

within a particular industry. Moreover, within each portfolio of changes in retail investors’

24I present the transition matrix in Section A.6 of the Internet Appendix.
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shares, I also form a high-minus-low portfolio (H-L) that takes a long position in the high

quintile portfolio and a short position in the low quintile portfolio. As a result, I form total

of 18 portfolios.

In Panel C of Table 14, I report the annualized monthly averages of value-weighted returns

on all portfolios. I include t-statistics in parentheses. In addition, I report the mean (value-

weighted) and the median of each group of the changes in retail investors’ shares. I first

find that, within the middle tercile (Group 2), the return spread (4.02% with a t-statistic of

2.27) is significant and comparable to that in the univariate portfolio sorting. In addition,

the change in retailed investors’ shares is close to zero in the middle tercile (the mean and

median are 0.29% and 0.19%, respectively). On the other hand, within the group of the

lowest or highest changes (Group 1 or 3) in retailed investors’ shares, the return spread (i.e.,

the returns on the H-L portfolio) is insignificant. These results suggest that the profitability-

return relation is orthogonal to the ownership of retail investors that are more subject to

overreaction bias.

5.5 Financial Distress

Prior literature documents a negative relationship between the firm’s financial distress and

future stock returns in the cross-section. In addition, the cash-based operating profitability

and financial distress are negatively correlated. Thus, part of the link between the firm’s cash-

based operating profitability and future stock returns may reflect the negative correlation

between financial distress and future stock returns. In this subsection, I extend the previous

analysis to investigate the joint link between cash-based profitability, financial distress, and

future stock returns in the cross-section.

Another possible explanation for the profitability-return relation is that firms with low

cash-based operating profitability could be close to financial distress (Griffin and Lemmon

(2000), Vassalou and Xing (2004), Campbell et al. (2008), Da and Gao (2010), Liu and Wen

(2017)); Existing studies document that financial distress is negatively related to subsequent

returns.25 If such the financial distress channel is responsible for the profitability effect,

I would expect that there is no profitability-return relation within firms close to financial

distress. To examine this explanation, I double sort firms’ Z index, O index, distance to

default, and failure probability into two portfolios (low and high) and firms’ cash-based

25Potential explanations for the negative relation between distress risk and expected returns include firm’s
endogenous choice of leverage (George and Hwang (2010)), violations of shareholder priority in bankruptcy
(Garlappi and Yan (2011)), and investors’ preference for skewed and lottery-like payoffs (Conrad et al. (2014)),
investor overconfidence (Gao et al. (2018)), and investors underreaction due to delayed prices (Liu and Wen
(2017)).
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operating profitability into quintile portfolios (low, 2, 3, 4, and high), all relative to their

industry peers.26 Moreover, within each governance portfolio, I also form a high-minus-

low portfolio (H-L) that takes a long position in the high-cash-based-operating-profitability

portfolio and a short position in the low counterpart portfolio. As a result, I form total of

12 portfolios.

[Place Table 15 about here]

5.5.1 O Index

Following Ohlson (1980) and Griffin and Lemmon (2000), I measure a firm’s financial distress

by using the O index. A high value of the O index suggests that the firm is subject to a dismal

status financially. As reported in Panel B of Table 15, I show that the return spread from

cash-based operating profitability is significantly positive in both less and more financially

distress groups. The return spread is 3.56% (with a t-statistic above 2) in the high financial

distress (i.e., high O index) group, and is 4.61% (with a t-statistic of 2.12) in the low financial

distress (i.e., high Z index) group. Within each O index bins (within the row), firms with high

cash-based operating profitability earn higher returns on average than firms with low cash-

based operating profitability. Thus, the cash-based operating profitability contains some

information about future stock returns that are not contained in the financial distress as

measured by the O index.

5.5.2 Z Index

I consider the financial distress measure of the Z index, according to Altman (1968) and

Griffin and Lemmon (2000). A lower value of the Z index implies that the firm is subject

to financial distress to a greater extent. In Panel B of Table 15, I show that the return

spread from cash-based operating profitability is significantly positive in both less and more

financially distress groups. The return spread is 2.67% (with a t-statistic of 2.11) in the high

financial distress (i.e., low Z index) group, and is 4.61% (with a t-statistic of 2.12) in the low

financial distress (i.e., high Z index) group. Based on the finding that financially distressed

firms’ cash-based operating profitability still predict stock returns, I can rule out the measure

of the Z index to explain the cash-based operating profitability premium.

26The detailed information of the O indexes, Z indexes, default probability, and failure probability refers to
Ohlson (1980), Altman (1968), Bharath and Shumway (2008), and Campbell, Hilscher, and Szilagyi (2008),
respectively.
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5.5.3 Default Probability

To measure a firm’s financial distress based on the Merton (1974) model, I construct the

firm-level measure of default probability. A high default probability suggests that the firm

is likely to undergo financial distress. In Panel C of Table 15, I show the results of double

sorting that the return spread from cash-based operating profitability is significantly positive

in both high and low default probability groups. The return spread is sizable and amounts

to 9.06% at 1% significance level in the high default probability group, and is 2.95% (with a

t-statistic of 2.21) in the low counterpart group. To briefly summarize findings in Panel C,

the high quintile portfolio sorted cash-based operating profitability earns a higher return on

average than the low quintile portfolio. As the result, I can exclude the possible explanation

based on the measure of default probability.

5.5.4 Failure Probability

Turning to the two-way-sorted portfolios on cash-based operating profitability and failure

probability, I follow Campbell, Hilscher, and Szilagyi (2008) to construct firm-level failure

probability. As reported in Panel D of Table 15, I present the returns of the 12 portfolios in-

dependently sorted on failure probability and cash-based operating profitability, respectively.

Within both high and low failure probability groups, firms with high cash-based operating

profitability significantly earn higher returns than firms with low cash-based operating prof-

itability. Therefore, such a finding suggests that the profitability-return relation is not driven

by a difference in failure probability.

Taken together, the return spread sorted on the cash-based operating profitability remains

robust and suggests that the profitability-return relation is not driven by financial distress.

5.6 Other Risk-based Explanations

In this subsection, I also explore possible explanations based on systematic risks posited in

prior studies. In particular, I consider five alternative channels that may drive variations

in my cash-based-operating-profitability-sorted portfolios, including technology obsolescence

(Lin, Palazzo, and Yang (2019)), value and profitability (Fama and French (2015), Hou, Xue,

and Zhang (2015)), financial constraint (Li (2011), Lins et al. (2017)), economic and political

uncertainty (Brogaard and Detzel (2015), Bali, Brown, and Tang (2017)), and adjustment

costs (Kim and Kung (2016) and Gu, Hackbarth, and Johnson (2017)). I elaborate upon

these alternative explanations as follows. First, high-profitability firms adopt more obsolete

technology and invest in less advanced capital in production. The arrival of new technology
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forces these firms to upgrade their capital, and, therefore, their cash flows are sensitive to

the frontier technology shock. Second, high-profitability firms invest more because of more

growth opportunities, or earning-based profitability measures, return on equity, contains

similar information as cash-based operating profitability. Third, low-profitability firms may

be subject to risk associated with financial constraints due to poor operating performance.

In addition, these firms may be subject to risk associated with macroeconomic uncertainty

(such as economic downturn or trade conflict) and political uncertainty (such as changes of

the ruling party). Finally, high-profitability firms earn higher expected returns because it is

costly for them to adjust their capital stock, especially during economic downturns.

To examine if the predictive ability of cash-based operating profitability can be attributed

to other explanations of risk, I implement independent two-way sorting by assigning all sample

firms by their values in a proxy for an alternative explanation (relative to their industry peers)

into two groups (low and high) and by their cash-based operating profitability into quintile

portfolios (low, 2, 3, 4, and high). In addition, within each portfolio sorted by the proxy

for a risk-based explanation, I also form a high-minus-low portfolio (H-L) that takes a long

position in the high-cash-based-operating-profitability portfolio and a short position in the

low-cash-based-operating-profitability portfolio. As a result, I form total of 12 portfolios for

each risk-based explanation. I then report the annualized monthly averages of value-weighted

returns on all 12 portfolios in Table 16.

[Place Table 16 about here]

5.6.1 Technology obsolescence

I consider the capital age and investment rate to measure firm-level technology obsolescence,

according to Lin, Palazzo, and Yang (2019) and Li, Tsou, and Xu (2019). A firm with an older

capital age or a lower investment rate faces higher exposures to technology frontier shocks and,

therefore, is riskier. In Panel A of Table 16, I show that the return spread from cash-based

operating profitability (i.e., return on the high-minus-low portfolio) remains comparable to

that in the univariate portfolio sort in both less and more capital age (investment rate)

groups. The return spread is 7.22% (with a t-statistic of 3.20) in the young capital age

group, and is 3.00% (with a t-statistic of 2.40) in the old capital age group. On the other

hand, the return spread is 3.25% (with a t-statistic of 2.37) in the low investment rate group

and is 5.81% (with a t-statistic of 3.18) in the high investment rate group. If technology

obsolescence or investment channel is the main driving force for the cash-based operating

profitability premium, then I should only observe significant return spreads in the old capital

age and low investment rate group. In contrast, the return spreads are significant in the
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young capital age and high investment rate groups. Therefore, the return spread sorted on

the cash-based operating profitability cannot be explained by technology obsolescence.

5.6.2 Book-to-market and Return on Equity

Furthermore, I also form two sets of twelve portfolios two-way-sorted on cash-based operating

profitability and book-to-market ratio and cash-based operating profitability and return on

equity, respectively. To briefly summarize the main findings, Panel B of Table 16 presents the

returns of the 12 portfolios sorted on book-to-market ratio and return on equity, respectively.

Within both high and low book-to-market ratio (return on equity) group, the cash-based

operating profitability spread remains significantly positive. These findings suggest that the

profitability-return relation is not driven by known predictors in the literature, including

book-to-market ratio and return on equity.

5.6.3 Financial Constraints

I consider the financial constraints measures of Whited and Wu (2006) and Hadlock and

Pierce (2010).27 A higher value of the SA or WW index suggests that the firm is subject

to financial constraints to a greater extent. In Panel C of Table 16, I show that the return

spread from cash-based operating profitability is significantly positive in both less and more

financially constrained groups. When I use the SA index, the return spread is 3.55% (with

a t-statistic of 2.41) in the low constraint group and is 8.82% (with a t-statistic of 3.73) in

the high constraint group. When I use the WW index, the return spread is 3.74% (with a

t-statistic of 2.47) in the low constraint group and is 11.25% (with a t-statistic of 4.82) in the

high constraint group. The fact that financially unconstrained firms’ cash-based operating

profitability still predict stock returns suggests that financial constraints cannot explain the

cash-based operating profitability premium.

5.6.4 Economic and Political Uncertainty

I follow Bali, Brown, and Tang (2017) to estimate firm-level exposure with respect to the

macroeconomic uncertainty index based on Jurado, Ludvigson, and Ng (2015) and to the po-

litical uncertainty index based on Bloom (2009) by using rolling window regressions.28 The

27Detailed information regarding the construction for the SA and WW indexes refers to Farre-Mensa and
Ljungqvist (2016).

28For each stock with non-missing cash-based-operating profitability in each month in my sample, I estimate
the uncertainty exposure from the monthly regressions of excess returns on the macroeconomic uncertainty
index over a 60-month rolling window by controlling for empirical risk factors, including the market (MKT),
size (SMB), value (HML), momentum (UMD), liquidity (LIQ), investment (I/A), and profitability (ROE).
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results in the left and right parts of Panel D of Table 16 present the returns of the 12 port-

folios sorted on macroeconomic uncertainty and political uncertainty, respectively. Within

both high and low macroeconomic (political) uncertainty exposure group, the return spreads

sorted on cash-based operating profitability are significantly positive. These findings suggest

that the profitability-return relation is not driven by different exposures to macroeconomic

(political) uncertainty.

5.6.5 Adjustment Costs

I follow the method of Kim and Kung (2016) and Gu, Hackbarth, and Johnson (2017) in

measuring a firm’s asset redeployability and inflexibility, respectively.29 If the adjustment

costs in asset redeployability (inflexibility) indeed drive the cash-based operating profitabil-

ity premium, I would expect that such premium would not exist in firms in the high asset

redeployability (low inflexibility) group that is associated with lower adjustment costs. How-

ever, as shown in Panel D of Table 16, the return spread sorted on cash-based operating

profitability is 6.36% with a t-statistic of 2.44 in the low asset redeployability group and

2.25% with a t-statistic of 2.01 in the high inflexibility group. On the other hand, the return

spread sorted on cash-based operating profitability amounts to 3.28% at the 1% significance

level in the high asset redeployability group. The return spread in the low inflexibility group

is also significant at 1% and amounts to 9.43%. The fact that the profitability-return re-

lation appears significantly positive in both high asset redeployability and low inflexibility

groups suggests that the return predictability I document is unrelated to the systematic risk

associated with adjustment costs.

Overall, I find that high-cash-based operating-profitability firms earn higher stock returns

than the lower counterparts in all groups that stand for low exposures to systematic risks

documented in the literature. All these results collectively point to a unique role of cash-based

operating in return predictability on the cross-section.

6 Conclusion

The awareness of informational friction that distorts the allocation of resources and distresses

productivity and output across heterogeneous firms has been documented in the macroeco-

nomic literature as an important driver in the propagation and the amplification of shocks

in the economy. This paper investigates the implications of cash-based operating prof-

itability on the cross-section of stock returns. A long-short portfolio constructed from firms

29Detailed information regarding the construction for the asset redeployability index refers to Table 16.
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with high versus low cash-based operating profitability relative to their industry peers gen-

erates an average excess return of around 4.54% per year. I also find that firms with high

cash-based operating profitability are with more precise information about their exposure to

common productivity shock for higher allocation efficiency and with better performance of

the investment-q regression. Together with findings suggest that these firms’ productivity

growth exhibit higher co-movements with aggregate productivity growth.

To explain my empirical finding of a cash-based operating profitability premium, I con-

sider an economy with imperfect information and develop a dynamic model economy with a

large cross-section of firms. The long-run productivity is unobservable and evolves over time,

while the learning takes place when firms can receive signals and update their beliefs about

the long-run productivity. A high information precision causes firms to update their beliefs

faster, which endogenously produce more variations in these firms’ q, and generates higher

exposure to aggregate productivity shocks. Therefore, these firms earn higher average excess

returns as risk premia. Further empirical analyses provide supportive evidence to my model

assumptions and implications. First, these firms’ payout and realized returns exhibit higher

co-movements with aggregate productivity shocks. Second, both two aggregate shock carries

a positive price of risk.

In addition to the learning mechanism in my model, I document that the return spread

cannot be explained by existing risk factors, including the Fama-French five-factor model

(Fama and French (2015)) and the HXZ q-factor model (Hou, Xue, and Zhang (2015)).

Fama and MacBeth (1973) regressions provide a valid cross-check for the positive relation

between cash-based operating profitability and stock returns. Next, I examine other sys-

tematic risk explanations, including capital age, investment rate, value, return on equity,

financial constraints, macroeconomic and political uncertainty, and asset redeployability and

inflexibility. Moreover, I also consider other possibilities including institutional ownership,

behavioral bias, and financial distress. None of these alternative explanations can fully ex-

plain the cash-based-operating-profitability-return relation. As a result, this study highlights

that imperfect information and learning can have a significant impact on asset prices.
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Figure 1: Cumulative Abnormal Returns of the High-minus-Low Portfolio

Cumulative abnormal returns are computed for the risk-adjusted returns (based on Fama-French five-factor
model and HXZ q-factor model) on the high-minus-low portfolio sorted by cash-based-operating profitability.
Fama-French five-factor model and HXZ q-factor model are defined in Table 11. I plot the time-series of
the cumulative abnormal returns from an initial investment of one dollar. The shaded bands are labeled as
recession periods, according to NBER recession dates. The sample period is July 1980-June 2018.
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Table 2: Univariate Portfolio Sorting

This table shows average excess returns for five portfolios sorted on cash-based operating profitability nor-
malized by total assets (ATQ) in Panel A, by property, plant, and equipment (PPENTQ) in Panel B, by
book equity (BE) in Panel C, and by sales (SALEQ) in Panel D by one-quarter relative to their industry
peers, for which I use the Fama and French (1997) 30 industry classifications, and rebalance portfolios at
the beginning of every January, April, July, and October. The sample starts from July 1980 to June 2018
and excludes financial and utility industries. I report average excess returns over the risk-free rate (E[R]-Rf),
t-statistics, standard deviations (Std), and Sharpe ratios (SR) across five portfolios in each panel. Portfolio
returns are value-weighted by firms’ market capitalization and are multiplied by 12 to make the magnitude
comparable to annualized returns. t-statistics based on standard errors using the Newey-West correction are
reported in parentheses.

L 2 3 4 H H-L

Panel A: Total Assets

E[R]-Rf (%) 5.50 7.12 7.70 7.83 10.05 4.55
[t] 1.64 2.35 2.94 2.94 3.72 2.50
Std (%) 18.44 18.27 16.34 15.48 15.79 9.66
SR 0.30 0.39 0.47 0.51 0.64 0.47

Panel B: Property, Plant, and Equipment

E[R]-Rf (%) 5.25 8.30 7.71 8.38 9.54 4.29
[t] 1.49 2.98 3.06 3.14 3.42 2.49
Std (%) 19.04 17.32 15.63 15.02 17.43 9.61
SR 0.28 0.48 0.49 0.56 0.55 0.45

Panel C: Book Equity

E[R]-Rf (%) 6.15 6.27 7.28 8.02 9.91 3.76
[t] 1.85 2.10 2.69 3.01 3.72 2.20
Std (%) 18.44 18.16 16.28 15.89 15.58 9.35
SR 0.33 0.35 0.45 0.50 0.64 0.40

Panel D: Sales

E[R]-Rf (%) 5.84 7.77 7.63 8.50 9.15 3.31
[t] 1.67 3.01 2.89 3.35 3.24 2.23
Std (%) 19.07 16.67 15.57 15.50 16.30 9.49
SR 0.31 0.47 0.49 0.55 0.56 0.35
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Table 3: Imperfect Information and Misallocation

This table reports time-series averages of the cross-sectional medians of analysts coverage, analysts’ forecast
dispersion, and time-series averages of capital misallocations in five portfolios sorted on cash-based profitabil-
ity, relative to their industry peers, for which I use the Fama and French (1997) 30 industry classifications,
and rebalance portfolios at the beginning of every January, April, July, and October. Analysts coverage
(Coverage) is calculated using the number of distinct analysts who made fiscal year one earnings forecast for
the stock during the month [t-11, t] as used in Hong, Lim, and Stein (2000) and Ali and Hirshleifer (2019).
If a firm is not covered by the IBES database, I assign its stock to zero analyst coverage. Analysts’ forecast
dispersion (Dispersion) is calculated as the standard deviation of earnings forecasts scaled by the absolute
value of the mean earnings forecast. If the mean earnings forecast is zero, according to Diether, Malloy, and
Scherbina (2002), then I assign the stock to the highest dispersion category. Misallocation 1 is calculated
using the MPK measure in Chen and Song (2013), and Misallocation 2 is calculated using the MPK measure
in David, Schmid, and Zeke (2018). I present each misallocation using SIC 2-digit and Fama and French
(1997) 30 industry classifications. The sample period is from 1979 to 2017 at a quarterly frequency and
excludes utility and financial industries from the analysis. The detailed definition of the measure of capital
misallocation refers to the Internet Appendix A.2.

L 2 3 4 H

Panel A: Analyst Coverage

Coverage 18.23 20.56 24.00 28.02 30.17
Dispersion 2.84 2.70 2.51 2.34 2.22

Panel B: Capital Misallocation

Misallocation 1
SIC 2-digit 1.14 0.96 0.90 0.81 0.76
FF30 1.19 0.98 0.92 0.83 0.78
Misallocation 2
SIC 2-digit 1.31 1.01 0.94 0.88 0.81
FF30 1.33 1.03 0.97 0.92 0.88
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Table 4: Calibrated Parameters

The Description of Parameter Symbol Value

Technology

Mean-reversion parameter of firm-specific shock ρa 0.10
Volatility of firm-specific shock σa 0.01
Mean-reversion parameter of short-run productivity shock ρx 0.30
Volatility of short-run productivity shock σx 0.12
Mean-reversion parameter of long-run productivity shock ρµ 0.01
Volatility of long-run productivity shock σµ 0.25
Mean of long-run productivity shock µ̄ 0.25

Production

Depreciation rate of capital δ 0.10

Investment

Proportional adjustment cost for investment χ 16

Stochastic Discount Factor (SDF)

Risk-free rate rf 0.03
Price of risk of short-run productivity shock λx 0.15
Price of risk of long-run productivity shock λµ 0.40
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Table 5: Unconditional Aggregate Moments

Moments Data Benchmark

E[Rm]-Rf (%) 5.71 8.91
Std[Rm] (%) 17.61 28.78
SR 0.32 0.31
I/K 0.04 0.04
Tobin’s q 1.43 1.63

Table 6: Portfolios, Firm Characteristics, and Model Comparison

This table reports time-series averages of the cross-sectional averages of firm characteristics across five port-
folios sorted on cash-based-operating profitability. Panel A is based on quintile portfolios as I present in
Panel C of Table 1; Panel B reports quintile portfolios based on my model economy as the benchmark. The
returns E[R]-Rf are annualized.

Moments L 2 3 4 H H-L

Panel A: Data

E[R]-Rf (%) 5.50 7.12 7.70 7.83 10.05 4.55
MPK 1.28 1.29 1.34 1.35 1.67
I/K 0.03 0.03 0.03 0.03 0.05
Tobin’s q 1.29 1.48 1.34 1.51 1.81
Duration 20.79 20.55 19.25 18.50 18.55

Panel B: Model

E[R]-Rf (%) 5.44 8.01 9.05 9.40 9.68 4.24
MPK 1.31 1.32 1.40 1.45 1.57
I/K 0.02 0.02 0.02 0.03 0.05
Tobin’s q 1.28 1.31 1.40 1.50 1.76
Duration 21.94 20.96 20.84 20.68 19.81
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Table 7: Investment and q Regressions

This table reports the results of investment regression among quintile portfolios sorted on a firm’s cash-based
profitability. All estimates are based on the following regression:

Ii,n,t
Ki,n,t−1

= β0,t + β0,i + βq,nqi,n,t + Controlsi,n,t + εi,n,t, for firms in portfolio n

in which Controlsi,n,t are control variables for firms’ fundamentals, including size, book-to-market ratio,
investment rate, and cash-based profitability. All independent variables are normalized to a zero mean and
a one standard deviation after winsorization at the 1st and 99th percentiles to reduce the impact of outliers.
t-statistics based on standard errors that are clustered at the firm level are reported. The sample period is
from 1979 to 2017 at quarterly frequency.

L 2 3 4 H

Tobin’s q 0.01 0.05 0.06 0.06 0.07
[t] 0.53 5.20 4.84 6.27 3.17
Log ME 0.16 0.08 0.02 0.01 -0.02
[t] 12.17 9.65 1.34 0.95 -0.72
Log B/M -0.00 -0.00 -0.01 -0.01 -0.00
[t] -0.28 -0.35 -1.39 -1.66 -0.28
COP/AT -0.14 -0.03 0.01 0.01 0.09
[t] -14.28 -4.80 1.81 1.77 3.66

Observations 63,874 66,445 69,705 69,495 65,604
R-squared 0.58 0.67 0.70 0.71 0.81
Time FE Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
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Table 8: Exposure to Aggregate Productivity Shocks

This table reports the aggregate productivity exposures among quintile portfolios sorted on a firm’s cash-
based profitability. All estimates are based on the following regression:

∆ lnAi,n,t = ξ0i + ξA,n∆ lnAt + Controlsi,n,t + εi,n,t, for firms in portfolio n

in which Controlsi,n,t are control variables for firms’ fundamentals, including size, book-to-market ratio,
investment rate, and cash-based profitability. Panel A and B differ in that they use two alternative estimation
methods in the first stage to estimate ∆ lnAi,n,t. Productivity in Panel A is based on the fixed effect
procedure, whereas productivity in Panel B is based on the dynamic error component method of Blundell
and Bond (2000). These estimation methods are described in the Internet Appendix A.4, following Ai, Croce,
and Li (2013) and Li, Tsou, and Xu (2019). All independent variables are normalized to a zero mean and a
one standard deviation after winsorization at the 1st and 99th percentiles to reduce the impact of outliers.
t-statistics based on standard errors that are clustered at the firm level are reported. The sample period is
from 1979 to 2017.

L 2 3 4 H L 2 3 4 H

Firm-level TFP 1 Firm-level TFP 2

∆ lnAt 0.43 0.36 0.35 0.42 0.78 0.35 0.38 0.39 0.38 0.88
[t] 4.51 3.81 2.80 2.23 2.21 4.99 5.49 4.43 2.37 2.52
Log ME -2.03 -1.52 -2.43 -2.35 -0.27 -1.80 -1.03 -1.59 -1.10 0.75
[t] -5.26 -3.59 -4.66 -3.01 -0.25 -6.05 -3.32 -3.93 -1.65 0.73
Log BM -2.21 -2.26 -2.80 -3.46 -2.48 -2.00 -2.05 -2.36 -2.88 -2.50
[t] -8.34 -7.88 -8.26 -6.75 -3.33 -9.32 -9.56 -9.11 -6.89 -3.44
I/K -1.36 -1.09 -1.72 -1.23 -1.12 -0.37 -0.31 -0.60 -0.14 0.21
[t] -7.27 -6.76 -7.09 -3.30 -1.40 -2.46 -2.43 -3.28 -0.44 0.26
CP/AT 1.27 0.97 1.30 1.91 0.74 1.26 0.73 0.87 1.67 -0.49
[t] 6.08 5.53 5.61 4.25 0.77 7.40 6.21 5.15 4.42 -0.57

Observations 25,739 24,641 24,494 22,199 18,714 25,866 24,875 24,838 22,696 19,098
R-squared 0.41 0.44 0.42 0.44 0.37 0.47 0.46 0.45 0.43 0.38
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
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Table 9: Payout Sensitivities to Productivity Shocks

This table shows payout sensitivities to short-run and long-run productivity shocks by cash-based operating
profitability sorted quintile portfolios. All estimates are based on the following panel regression:

Ni,t = β0,i + βsrε
x
t + βlrε

µ
t + ρNi,t−1 + βµµt−1 + Controlsi,t−1 + residt,

in which Ni,t denotes firm i’s payout (income-to-sales) ratio, εxt and εµt denotes short- and long-run shocks,
respectively. Controls variables for a firm’s fundamentals include size and book-to-market ratio. I further
control for the predetermined value of the long-run component, µt−1, and the lagged payout ratio Ni,t−1.
Standard errors are adjusted for heteroscedasticity and clustered at the firm level.

Payout Sensitivities

L 2 3 4 H

εx,t -2.16 0.64 0.59 0.85 0.64
[t] -1.11 2.89 10.22 6.70 0.94
εµ,t -2.74 0.27 0.23 0.22 1.77
[t] 4.62 9.80 7.86 4.97 5.67
Ni,t−1 0.55 0.30 0.43 0.47 0.45
[t] 132.43 116.67 134.81 134.28 104.25
xt−1 -7.49 -0.79 0.68 1.02 4.04
[t] -3.54 -3.38 11.06 7.67 5.56
lagged log ME 26.01 1.57 2.46 2.33 3.22
[t] 5.69 2.65 14.29 6.04 1.58
lagged B/M 8.11 1.21 0.89 0.85 4.23
[t] 2.92 3.87 10.35 4.52 4.00

Observations 33,719 40,568 43,080 44,598 44,267
Firm FE Yes Yes Yes Yes Yes
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Table 10: Estimating the Market Price of Risk

In Panel A, I present GMM estimates of the parameters of the stochastic discount factor SDFt = 1 − λx ×
εxt − λµ × εµt , using the quintile portfolios sorted on cash-based operating profitability. εa and εx denotes
the short- and long-run productivity shock. I do the normalization such that E[m] = 1 (See, e.g., Cochrane
(2005)). RMKT , ∆ lnAt, ε

x
t , and εµt are normalized to zero mean and unit standard deviation. I report

t-statistics and computed errors using the Newey-West procedure adjusted for three lags. As a measure of
fit, I report the sum of squared errors (SSQE), mean absolute pricing errors (MAPE), and the J-statistic of
the overidentifying restrictions of the model. In Panel B, I present testing portfolios’ risk exposures (βx and
βµ) to the short- and long-run productivity shock, respectively.

Panel A: Price of Risk

CAPM Model TFP Model Two-factor Model

λx 0.28 0.79 0.57
[t] 2.97 1.88 3.41
λµ 0.81
[t] 2.80
SSQE (%) 6.02 6.03 1.13
MAPE (%) 4.12 4.25 1.96
J-Test 9.49 7.56 2.47
p 0.09 0.18 0.65

Panel B: Portfolio Risk Exposures

L 2 3 4 H H-L

βx 1.01 0.67 0.59 1.09 1.09 0.11
[t] 1.16 0.86 0.83 1.30 1.21 0.24
βµ 2.51 3.01 3.36 3.84 4.08 1.77
[t] 2.12 2.55 2.82 2.80 2.64 2.65
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Table 11: Asset Pricing Factor Tests

This table shows asset pricing factor tests for five portfolios sorted on cash-based operating profitability
relative to their industry peers, for which I use the Fama and French (1997) 30 industry classifications and
rebalance portfolios at the beginning of every January, April, July, and October. The results reflect monthly
data, for which the sample starts from July 1980 to June 2018 and excludes financial and utility industries.
To adjust for risk exposure, I perform time-series regressions of cash-based-profitability-sorted portfolios’
excess returns on the market factor (MKT) as the CAPM model in Panel A, on the Fama and French (1996)
three factors (MKT, the size factor-SMB, and the value factor-HML) in Panel B, on the Fama and French
(1996) three factors plus Carhart (1997) factor (MKT, the size factor-SMB, the value factor-HML, and the
momentum factor-UMD), on the Fama and French (2015) five factors (MKT, the size factor-SMB, the value
factor-HML, the profitability factor-RMW, and the investment factor-CMA) in Panel D, and on the Hou,
Xue, and Zhang (2015) q-factors (MKT, SMB, the investment factor-I/A, and the profitability factor-ROE)
in Panel E, respectively. Data on the Fama-French five-factor and Carhart factors are from Kenneth French’s
website. Data on the I/A and ROE factor are provided by Kewei Hou, Chen Xue, and Lu Zhang. These
betas, together with alphas, are annualized by multiplying 12. Standard errors are estimated by using the
Newey-West correction, and the corresponding t-statistics are reported in parentheses.

L 2 3 4 H H-L

Panel A: CAPM

αCAPM -3.51 -2.12 -0.70 -0.15 2.04 5.55
[t] -2.74 -2.31 -1.05 -0.20 2.24 3.20
MKT 1.12 1.15 1.04 0.99 1.00 -0.12
[t] 37.36 41.36 53.66 50.33 45.12 -3.12

L 2 3 4 H H-L L 2 3 4 H H-L

Panel B: FF3 Panel B: FF4

αFF3 -4.31 -3.14 -0.99 0.53 3.36 7.67 αFF4 -3.52 -2.43 -0.52 0.85 3.20 6.73
[t] -3.58 -3.02 -1.44 0.76 4.14 4.51 [t] -2.96 -2.39 -0.80 1.19 3.91 4.04
MKT 1.08 1.13 1.03 0.98 0.96 -0.12 MKT 1.06 1.12 1.02 0.97 0.96 -0.10
[t] 43.65 38.22 54.58 61.44 59.52 -3.97 [t] 43.41 46.05 51.20 70.01 57.62 -3.64
SMB 0.32 0.25 0.12 -0.07 -0.07 -0.39 SMB 0.33 0.26 0.12 -0.07 -0.07 -0.40
[t] 7.12 6.40 4.66 -2.63 -2.71 -6.84 [t] 7.25 6.24 4.60 -2.66 -2.72 -6.83
HML -0.06 0.04 -0.02 -0.09 -0.23 -0.17 HML -0.09 0.01 -0.04 -0.11 -0.22 -0.13
[t] -1.34 1.11 -0.86 -4.14 -6.84 -2.49 [t] -1.96 0.29 -1.81 -4.53 -6.86 -1.89

UMD -0.08 -0.07 -0.05 -0.03 0.02 0.10
-2.93 -3.41 -3.45 -1.15 0.92 2.99

Panel D: FF5 Panel E: HXZ

αFF5 -2.90 -2.23 -0.97 0.46 2.20 5.10 αHXZ -1.89 -1.08 -0.29 1.12 2.59 4.48
[t] -2.66 -2.10 -1.40 0.69 2.68 3.40 [t] -1.65 -1.04 -0.37 1.48 2.54 2.76
MKT 1.06 1.12 1.03 0.98 0.99 -0.07 MKT 1.05 1.12 1.03 0.98 0.99 -0.07
[t] 39.25 41.86 64.52 78.74 67.89 -2.46 [t] 39.60 53.33 51.32 62.56 41.44 -2.02
SMB 0.30 0.24 0.12 -0.07 -0.06 -0.36 SMB 0.25 0.19 0.09 -0.10 -0.08 -0.33
[t] 5.96 7.59 4.33 -2.92 -2.38 -5.77 [t] 5.35 8.20 3.32 -4.50 -2.53 -5.44
HML -0.03 0.03 -0.04 -0.09 -0.29 -0.25 HML -0.09 0.09 -0.02 -0.12 -0.22 -0.13
[t] -0.68 0.64 -1.56 -2.06 -9.02 -3.67 [t] -1.48 1.80 -0.43 -3.04 -4.08 -1.50
RMW -0.12 -0.09 0.03 -0.01 0.15 0.26 ROE -0.15 -0.17 -0.01 -0.02 0.13 0.28
[t] -1.83 -2.13 0.55 -0.34 3.97 2.86 [t] -2.96 -5.54 -0.46 -0.52 3.89 4.10
CMA 0.00 0.07 0.06 -0.01 0.08 0.08
[t] 0.02 1.22 1.19 -0.18 1.51 0.70
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Table 12: Fama-MacBeth Regressions

This table reports Fama-MacBeth regressions of individual stock excess returns on their cash-based operating
profitability and other firm characteristics. I conduct cross-sectional regressions for each month. In each
month, monthly returns of individual stock returns (annualized by multiplying them by 12) are regressed
on cash-based profitability, different sets of control variables that are known for 6 months prior to portfolio
formation, except the market capitalization (Size), and industry fixed effects. Control variables include the
natural logarithm of market capitalization (Size), the natural logarithm of book-to-market ratio (B/M),
investment rate (I/K), return on equity (ROE), and industry dummies based on Fama and French (1997) 30
industry classifications. All independent variables are normalized to a zero mean and one standard deviation
after winsorization at the 1st and 99th percentiles to reduce the impact of outliers. t-statistics based on
standard errors estimated using the Newey-West correction are reported. The sample period is July 1980 to
June 2018.

(1) (2) (3) (4) (5) (6)

COP/AT 3.00 3.98 2.96 2.55 2.74 2.72
[t] 4.05 7.33 4.25 5.81 4.52 7.92
Log ME -4.38 -3.43
[t] -3.73 -3.45
Log B/M 5.51 3.32
[t] 6.93 4.43
ROE 1.65 3.10
[t] 1.60 3.43
I/K -3.56 -2.63
[t] -5.49 -5.56

Observations 1,404,098 1,396,461 1,404,082 1,404,023 1,007,172 1,001,909
R-squared 0.04 0.04 0.04 0.04 0.05 0.06
Industry FE Yes Yes Yes Yes Yes Yes
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Table 13: Double Sorting - Size

This table reports average excess stock returns of ten portfolios independently sorted on five portfolios based
on cash-based operating profitability and two portfolios based on size, all relative to their industry peers
based on the Fama and French (1997) 30 industry classifications. At the beginning of January, April, July,
and October, I assign firms into big (B) and small (S) groups based on their market capitalization relative to
industry peers and group firms into quintile portfolios (from low to high) based on their cash-based operating
profitability relative to industry peers. I then track the value-weighted returns on each portfolio for a quarter.
I report the annualized portfolio returns by multiplying them by 12 (and report t-statistics in parentheses).

L 2 3 4 H H-L

S 2.01 8.50 10.95 13.29 11.73 9.72
[t] 0.58 2.87 3.88 5.16 4.94 4.88
B 5.95 7.12 7.66 7.83 9.93 3.98
[t] 2.10 2.82 3.31 3.01 3.87 2.85
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Table 14: Double Sorting - Behavioral

This table reports average excess stock returns of portfolios sorted on cash-based-operating profitability and
the alternative measure of a behavioral explanation relative to their industry peers based on the Fama and
French (1997) 30 industry classifications. In Panel A, I report average excess stock returns of two by five port-
folios independently double sorted on cash-based operating profitability and institutional ownership. I collect
quarterly institutional ownership data at the end of each quarter from the Thomson Reuters Institutional
Holdings (13F) database, which keeps track of the 13F filings of professional money managers. An institu-
tional investment manager with investment discretion over 100 million or more is required to file Form 13F
with the SEC within 45 days at the end of a calendar quarter on the number of shares they hold of stocks. A
firm’s institutional ownership is calculated as the ratio of the summation of its shares held by an institutional
investors to total shares outstanding in a given quarter. The sorting on cash-based operating profitability is
reported across columns L to H, and the sorting on the measure of institutional ownership is reported across
row L and H. The column H-L stands for the high-minus-low portfolio (across columns) within portfolios
sorted on institutional ownership. In Panel B, at the beginning of every January, April, July, and October,
I first sort stocks into five portfolios based on firms’ cash-based operating profitability. Then, firms in the
high quintile portfolio are further sorted into two portfolios based on their cash-based operating profitability
in the next quarter, and I report their portfolio returns denoted as HL and HH, respectively. I also report
the average portfolio return in the low quintile portfolio sorted on cash-based operating profitability at the
beginning of every January, April, July, and October. Lastly, I calculate the return difference between HL
and L portfolios (HL-L), and the return difference between HH and L portfolios (HH-L). In the left Panel C,
I report average excess stock returns of three by five portfolios dependently double sorted on changes in the
fraction of firm shares outstanding owned by retail investors and then on cash-based operating profitability
on the report date of quarterly earnings. The sorting on cash-based operating profitability is reported across
columns L to H, and the sorting on changes in the fraction of firm shares outstanding owned by retail in-
vestors is reported across row L, 2, and H. The column H-L stands for the high-minus-low portfolio (across
columns) within each portfolio sorted by the fraction of firm shares outstanding owned by retail investors. In
the right Panel C, I report the time-series average of the cross-sectional mean and median of changes in the
fraction of firm shares outstanding owned by retail investors across tercile portfolios. All portfolio returns
correspond to value-weighted returns by firm market capitalization. I report the annualized portfolio returns
by multiplying them by 12 (and t-statistics in parentheses). The sample period is July 1980 to June 2018.

Panel A: Institutional Ownership

L 2 3 4 H H-L

L 2.76 7.01 7.13 6.19 9.72 6.96
[t] 0.60 2.15 2.21 1.58 3.02 2.09
H 7.58 8.21 7.75 9.49 10.65 3.07
[t] 2.11 2.31 2.42 2.81 3.03 2.32

Panel B: Underreaction

HL HH L HL-L HH-L

E[R]-Rf (%) 9.69 10.51 5.50 4.18 5.01
[t] 3.82 3.43 1.64 2.35 2.51

Panel C: Overreaction

L 2 3 4 H H-L Mean Median

L 8.26 8.21 10.81 9.31 10.25 1.99 -2.35 -2.31
[t] 3.04 2.69 4.12 2.70 2.39 0.77
2 6.38 9.62 6.44 9.00 10.45 4.08 0.05 0.04
[t] 2.16 2.92 2.05 2.60 3.35 2.96
H 5.43 10.13 10.81 8.60 9.11 3.68 2.39 2.64
[t] 1.43 2.82 3.21 2.63 2.15 1.57
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Table 15: Double Sorting - Financial Distress

This table reports average excess stock returns of two by five portfolios independently sorted on cash-based
operating profitability and the measure of financial distress, referring to the O index in Panel A, Z index
in Panel B, distance to default in Panel C, and failure probability in Panel D, all relative to their industry
peers based on the Fama and French (1997) 30 industry classifications. The detailed information of the O
index, Z index, default probability, and failure probability refers to Ohlson (1980), Altman (1968), Bharath
and Shumway (2008), and Campbell, Hilscher, and Szilagyi (2008), respectively. At the beginning of every
January, April, July, and October, I assign firms into low (L) and high (H) groups based on their financial
distress measures. I then track the value-weighted returns on each portfolio over the next three months. I
report the annualized portfolio returns by multiplying them by 12 (and report t-statistics in parentheses).

L 2 3 4 H H-L L 2 3 4 H H-L

Panel A: O Index Panel B: Z Index

L 5.56 7.48 7.42 7.63 9.99 4.43 7.06 9.27 8.8 7.89 9.74 2.67
[t] 1.55 2.31 2.55 2.12 2.87 2.04 1.92 2.91 3.19 2.99 3.23 2.11
H 6.25 6.67 8.61 11.38 9.81 3.56 5.61 4.52 6.63 8.08 10.22 4.61
[t] 1.48 1.64 2.70 4.28 3.54 2.10 1.50 1.38 2.20 1.99 2.91 2.12

Panel C: Distance to Default Panel D: Failure Probability

L 7.04 6.23 7.72 7.68 9.99 2.95 7.41 6.48 7.14 7.88 9.85 2.45
[t] 2.51 2.57 3.39 2.88 3.84 2.21 2.85 2.74 3.09 2.84 3.63 1.88
H 1.85 8.65 7.16 10.71 10.91 9.06 2.50 7.47 8.96 6.76 8.39 5.89
[t] 0.59 2.68 2.64 4.63 4.79 4.91 0.74 2.43 3.54 3.01 3.41 3.74
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Table 16: Double Sorting - Other Risks

This table reports average excess stock returns of independent two-way sorting by assigning all sample
firms’ values in a proxy for an alternative explanation, including technology obsolescence (capital age and
investment rate) in Panel A, book-to-market ratio, and return on equities in Panel B, financial constraints (SA
and WW index) in Panel C, the exposure of economic uncertainty (macroeconomic uncertainty and political
uncertainty index) in Panel D, and adjustment cost (asset redeployability and inflexibility) in Panel E, into
two groups (low and high) and by assigning them by their cash-based profitability into quintile portfolios
(low, 2, 3, 4, and high). Asset redeployability is constructed in a three-step procedure. First, I compute the
asset-level redeployability as the proportion of industries that use a given asset. Second, the industry-level
redeployability index is the value-weighted average of each asset’s redeployability. Finally, I obtain the firm-
level measure of asset redeployability by the value-weighted average of industry-level redeployability indices
across business segments in which the firm operates. The asset redeployability data is available from Howard
Kung’s website. In addition, within each portfolio sorted by the proxy for a risk-based explanation, I also
form a high-minus-low portfolio (H-L) that takes a long position in the high-cash-based-profitability portfolio
and a short position in the low-cash-based-profitability portfolio. As a result, I form total of 12 portfolios for
each risk-based explanation. I then report the monthly averages of value-weighted returns on all 12 portfolios.
I annualize the portfolio returns by multiplying them by 12 and include t-statistics in parentheses.

L 2 3 4 H H-L L 2 3 4 H H-L

Panel A: Technology Obsolete

Capital Age I/K

L 3.49 7.84 6.85 7.83 10.72 7.22 7.17 7.27 7.66 7.95 10.52 3.35
[t] 1.00 2.99 2.64 2.90 3.75 3.20 2.61 2.70 3.07 3.02 3.90 2.37
H 6.70 7.03 8.21 7.48 9.69 3.00 2.95 6.90 7.74 7.62 8.76 5.81
[t] 2.44 2.68 3.76 2.97 3.91 2.40 0.85 2.87 3.48 2.84 3.60 3.18

Panel B: Value and Profitability

B/M ROE

L 4.90 5.26 7.48 7.65 9.86 4.96 1.99 6.70 8.31 8.90 11.08 9.09
[t] 1.70 2.00 3.58 2.89 3.77 2.45 0.52 1.91 2.75 2.99 3.43 2.39
H 6.00 9.30 8.08 7.43 12.50 6.50 7.55 7.06 7.52 7.92 9.95 2.40
[t] 1.73 3.78 2.82 2.76 5.26 2.24 3.12 3.37 3.55 3.05 3.85 2.03

Panel C: Financial Constraint

SA WW

L 6.44 7.22 7.67 7.75 9.98 3.55 6.14 7.25 7.67 7.79 9.88 3.74
[t] 2.29 2.86 3.32 3.00 3.81 2.41 2.14 2.83 3.33 3.03 3.77 2.47
H 0.25 5.04 6.59 10.91 9.06 8.82 -0.30 5.01 9.18 10.76 10.95 11.25
[t] 0.07 1.59 2.37 4.34 3.78 3.73 -0.09 1.71 3.50 4.29 5.04 4.82

Panel D: Uncertainty

Macroeconomic Uncertainty Political Uncertainty

L 4.24 5.71 7.46 7.46 9.91 5.67 5.90 6.55 7.15 7.48 9.36 3.46
[t] 1.32 2.00 2.93 3.20 4.11 2.98 1.86 2.16 2.75 2.54 3.23 1.98
H 7.78 8.44 8.10 8.45 10.82 3.04 5.74 8.46 8.34 8.04 11.72 5.98
[t] 2.77 2.80 3.10 2.36 3.14 1.99 1.85 3.37 3.31 2.78 3.89 2.13

Panel E: Adjustment Cost

Redeployability Inflexibility

L 3.40 7.79 8.14 8.17 9.76 6.36 2.87 7.33 8.26 7.31 12.30 9.43
[t] 0.84 2.51 3.12 2.62 3.40 2.44 0.83 2.59 3.33 2.52 4.56 4.91
H 7.11 7.97 8.45 8.03 10.39 3.28 6.92 7.65 7.46 8.11 9.17 2.25
[t] 2.2 2.59 2.86 2.65 3.46 3.04 2.65 3.22 3.48 3.46 3.46 2.01
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A Supplementary Analyses

A.1 Data Sources

My sample consists of firms that lie in the intersection of quarterly Compustat and CRSP

(Center for Research in Security Prices). I obtain accounting data from Compustat and

stock returns data from CRSP. My sample firms include those with domestic common shares

(SHRCD = 10 and 11) trading on NYSE, AMEX, and NASDAQ, excluding utility firms with

SIC 4-digit (Standard Industrial Classification) codes between 4900 and 4949 and finance

firms with SIC codes between 6000 and 6999 (finance, insurance, trusts, and real estate sec-

tors). Delisting returns are taken from CRSP; if a delisting return is missing and the delisting

is performance-related, I impute a return of -30%, according to Shumway (1997). According

Fama and French (1993), I further drop closed-end funds, trusts, American depository re-

ceipts, real estate investment trusts, and units of beneficial interest. To mitigate backfilling

bias, firms in my sample must be listed on Compustat for two years before including them

in my sample. I match the firms on CRSP against quarterly Compustat, and lag quarterly

accounting information by six months. For example, if a firm’s first fiscal quarter ends in

March, I assume that this information is public by the end of of the following September.

Macroeconomic data refers to the Bureau of Economic Analysis (BEA) maintained by the

United States Department of Commerce, except the total factor productivity that is obtained

from the U.S. Bureau of Labor Statistics (BLS).

I calculate a firm’s operating profitability by following the computations in Ball, Gerakos,

Linnainmaa, and Nikolaev (2015): sales (SALEQ) minus cost of goods sold (COGSQ) minus

sales general, and administrative expenses (XSGAQ) (excluding research and development

expenditures (XRDQ)).1 Such a measure captures the performance of the firm’s operations

and is not affected by non-operating items, such as leverage and taxes. To evaluate the

ability of the cash portion of operating profitability to predict stock returns, I remove the

accrual components included in the computation of operating profitability to create the cash-

based operating profitability measure. These components include the changes in accounts

receivable (RECTQ), inventory (INVTQ), prepaid expenses (XPP), deferred revenue (DRCQ

plus DRLTQ), accounts payable (APQ). Accruals are calculated in accordance with Wu,

Zhang, and Zhang (2010).

I measure a firm’s capital and investment following Lin, Palazzo, and Yang (2019) and Li,

Tsou, and Xu (2019). I first denote an initial measure of firm-level capital stock (Ki,0) for firm

1Variables constructed in my sample are based on quarterly Compustat, while those in Ball, Gerakos,
Linnainmaa, and Nikolaev (2015) and Ball, Gerakos, Linnainmaa, and Nikolaev (2016) are based on annual
Compustat.
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i using net property plant and equipment (PPENTQ) as the initial measure of firm i’s capital.

After obtaining the initial capital by calculating the ratio of accumulated depreciation and

amortization (DPACTQ) over current depreciation and amortization (DPQ), I recursively

construct a measure of firm-level capital stock as follows:

Ki,t+1 = Ki,t + INi,t, (A.1)

in which INi,t denotes firm i net investment between period t and t + 1. Net investment

is defined as the difference in net property plan and equipment between two consecutive

quarters. I denote firm i’s gross investment as

INi,t = δjKi,t + INi,t, (A.2)

in which δj refers to the depreciation rate of industry j calculated by using industry-level

depreciation data from BEA. All the quantities are expressed in 2009 dollars using the sea-

sonally adjusted implicit price deflator for non-residential fixed investment.

Market capitalization is calculated by using data from CRSP and it is equal to the number

of shares outstanding (SHROUT) multiplied by the share price (PRC). When size is reported

to levels, I express it in 2009 dollars using the seasonally adjusted implicit price deflator for

non-residential fixed investment. Quarter book value of equity is constructed following Hou,

Xue, and Zhang (2015), and it is equal to shareholder’s equity (SEQQ) plus deferred taxes

and investment tax credit (TXDITCQ, if available) minus the book value of preferred stock

(PSTKRQ). If shareholder’s equity is not available, I use common equity (CEQQ) plus car-

rying value of the preferred stock (PSTKQ). If common equity is not available, I measure

shareholder’s equity as the difference between total assets (ATQ) and total liabilities (LTQ).

The book-to-market ratio is the book value of equity divided by the market capitalization

(PRCCQ times CSHOQ) at the end of the fiscal quarter. When I construct firm-level capital

stock and gross investment observations, firm i’s investment rate is measured as gross in-

vestment δjKi,t + INi,t divided by the beginning of the period of capital stock Ki,t. Return on

equity (ROE) is defined as income before extraordinary items (IBQ) divided by the previous

quarter book value of equity.

A.2 Capital Misallocation

Following Chen and Song (2013), I measure the marginal product of capital by the ratio

of operating income before depreciation (OIBDPQ) to one-year-lag net property, plant, and

equipment (PPENTQ). For robustness, I follow David et al. (2018) to construct an alternative
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measure of marginal product of capital by replacing the operating income before depreciation

(OIBDPQ) with sales (SALEQ).2 All the quantities are expressed in 2009 constant dollars

using the seasonally adjusted implicit price deflator for non-residential fixed investment.

Following Hsieh and Klenow (2009), I extend from manufacturing to all sectors, except

utility, financial, high R&D industries, and compute the cross-sectional standard deviation

as the dispersion measure within narrowly defined industries, as classified by the 2-digit SIC

(Standard Industry Classification) industries, or broadly defined industries, as classified by

the Fama-French 30 industries. Specifically, for firm i in industry j, I compute:

log

(
MPKi,j

MPKj

)
,

in which MPKj is the cross-sectional average of MPK measured at the industry-level. I

construct the measure of misallocation as follows. First, I compute the standard deviation of

log

(
MPKi,j
MPKj

)
at the industry-level within each portfolio sorted on capital age, in which the

number of observations within each narrowly or broadly defined industry must be larger than

10 to avoid biased standard deviations driven by a few extreme values.3 Second, I take the

cross-sectional average of standard deviations across industries within each portfolio. Finally,

as shown in Table 3, I report time-series averages of the cross-sectional dispersions of MPK

in five portfolios sorted on cash-based operating profitability.

A.3 Cash flow duration

I construct firm i’s cash flow duration to reflect the timing of cash flows, according to the

model proposed by Lettau and Wachter (2007). Duration is the equity implied cash flow

duration. Dechow, Sloan, and Soliman (2004) proposes the measure of cash flow duration

and documents a negative relationship between cash flow durations and stock returns; in

addition, Weber (2018) recently studies asset pricing implications, including exposure to

existing risk factors, time variations in the slope, and the effect of short-sale constraints.

Duration resembles the traditional Maculay duration for bonds, which reflects the weighted

average time to maturity of cash flows. The ratio of discounted cash flows to price determines

2Using sales (SALEQ) to proxy a firm’s output alleviates any missing data concerns, given that the cover-
age of sales (SALEQ) is higher than that of operating income before depreciation (OIBDPQ) in Compustat.

3The industry coverage attrition issue is more salient for narrowly defined industries. Specifically, after I
impose this restriction, the valid number of industries according to SIC 2-digit industry classifications drops
from 75 to 42 for both MPK measures; in contrast, the valid number of industries according to Fama-French
30 industry classifications drops from 28 to 24 for the MPK measure following Chen and Song (2013) and
also drops to 26 for the MPK measure following David, Schmid, and Zeke (2018).
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the weights:

Duri,t =

∑T
s=1 s× CFi,t+s/(1 + r)s

Pi,t
, (A.3)

in which I denote Duri,t as firm i’s duration at the end of fiscal year t, CFi,t+s is the cash

flow at time t + s, Pi,t is the current stock price, and r is the expected return on equity.

Following Dechow, Sloan, and Soliman (2004), I assume the constant expected return on

equity across both stocks and time. Relaxing such an assumption for firm-specific discount

rates generates larger cross-sectional variations in the duration measure since firms with high

cash flow duration tend to be growth firms with lower stock returns. For simplicity’s sake, I

focus on the measure of cash flow duration by imposing the constant expected return.4

In contrast to fixed income securities, such as bonds, stocks cannot have a well-defined

finite maturity, t + T , and cash flows are not known in advance. Therefore, I split the

duration formula into a finite detailed forecasting period and an infinite terminal value. I

also assume that the later component is paid out as the level perpetuity for simplicity. Such

the assumption allows us to rewrite the equation (A.3) as follows:

Duri,t =

∑T
s=1 s× CFi,t+s/(1 + r)s

Pi,t
+

(
T +

1 + r

r

)
× Pi,t −

∑T
s=1CFi,t+s/(1 + r)s

Pi,t
. (A.4)

Moreover, I impose a clean surplus accounting, based on an accounting identify, and forecast

cash flows via forecasting return on equity (ROE), Ei,t+s/BVi,t+s−1, and growth in book

equity, (Bi,t+s −Bi,t+s−1)/BVi,t+s−1:

CFi,t+s = Ei,t+s − (Bi,t+s −Bi,t+s−1)

= Bi,t+s−1 ×
[
Ei,t+s
Bi,t+s−1

− Bi,t+s −Bi,t+s−1

Bi,t+s−1

]
. (A.5)

Following Dechow, Sloan, and Soliman (2004), I model returns on equity and growth in

equity as autoregressive process based on recent findings in financial accounting literature.

In Weber (2018), the author estimates autoregressive parameters by using the merged CRSP-

Compustat universe and assumes the mean reversion of ROE to the average cost of equity.

I also follow the estimated autoregressive parameters in Weber (2018) by assuming that the

growth in book equity is mean reverting to the long-run average growth rate in the economy

with a coefficient of mean reversion equal to the average historical mean reversion in sales

growth. The persistence of AR(1) model is 0.41 for ROE and 0.24 for BV , respectively. I

assign the discount rate r to a value 0.12, which is equal to a steady-state average cost of

4According to Weber (2018), the variation over time in the return on equity r does not alter the cross-
sectional ranking, which alleviate the concern for the cross-sectional implications.
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equity of 0.12. Finally, I assign the average long-run nominal growth rate to a value 0.06,

and use a detailed forecasting period of 15 years.

A.4 Firm-level Productivity Estimation Details

Firm-level productivity estimation Data and firm-level productivity estimation are

constructed as follows. I consider publicly traded companies on U.S stock exchanges listed in

both the annual Compustat and the CRSP (Center for Research in Security Prices) databases

for the period 1950-2017. In what follows, I report the annual Compustat items in parentheses

and defined industry at the level of two-digit SIC codes. The output, or value added, of firm

i in industry j at time t, yi,j,t, is calculated as sales (SALE) minus the cost of goods sold

(COGS) and is deflated by the aggregate gross domestic product (GDP) deflator from the

U.S. National Income and Product Accounts (NIPA). I measure the capital stock of the firm,

ki,j,t, as the total book value of assets (AT) minus current assets (ACT). This allows us to

exclude cash and other liquid assets that may not be appropriate components of physical

capital. I use the number of employees in a firm (EMP) to proxy for its labor inputs, ni,j,t,

because data for total hours worked are not available.

I assume that the production function at the firm level is Cobb-Douglas and allow the

parameters of the production function to be industry-specific:

yi,j,t = Ai,j,tk
α1,j

i,j,t n
α2,j

i,j,t ,

where Ai,j,t is the firm-specific productivity level at time t. This is consistent with our original

specification because the observed physical capital stock, ki,j,t, corresponds to the mass of

production units owned by the firm.

I estimate the industry-specific capital share, α1,j, and labor share, α2,j, using the dynamic

error component model adopted in Blundell and Bond (2000) to correct for endogeneity.

Given the industry-level estimates for α̂1,j and α̂2,j, the estimated log productivity of firm i

is computed as follows:

ln Âi,j,t = ln yi,j,t − α̂1,j · ln ki,j,t − α̂2,j · lnni,j,t.

I allow for α̂1,j + α̂2,j 6= 1, but my results hold also when I impose constant returns to scale

in the estimation, that is, α̂1,j + α̂2,j = 1.

I use the multi-factor productivity index for the private non-farm business sector from

the BLS as the measure of aggregate productivity.
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Endogeneity and the dynamic error component model. I follow Blundell and Bond

(2000) and write the firm-level production function as follows:

ln yi,t = zi + wt + α1 ln ki,t + α2 lnni,t + vi,t + ui,t

vi,t = ρvi,t−1 + ei,t, (A.6)

where zi, wt, and vi,t indicate a firm fixed effect, a time-specific intercept, and a possibly

autoregressive productivity shock, respectively. The residuals from the regression are denoted

by ui,t and ei,t and are assumed to be white noise processes. The model has the following

dynamic representation:

∆ ln yi,j,t = ρ∆ ln yi,j,t−1 + α1,j∆ ln ki,j,t − ρα1,j∆ ln ki,j,t−1 + α2∆ lnni,j,t − ρα2∆ lnni,j,t−1

+(∆wt − ρwt−1) + ∆κi,t, (A.7)

where κi,t = ei,t + ui,t − ρui,t−1. Let xi,j,t = {ln(ki,j,t), ln(ni,j,t), ln(yi,j,t)}. Assuming that

E[xi,j,t−lei,t] = E[xi,j,t−lui,t] = 0 for l > 0 yields the following moment coditions:

E[xi,i,t−l∆κi,t] = 0 for l ≥ 3

E[xi,j,t−l∆κi,t] = 0 for l ≥ 3. (A.8)

that are used to conduct a consistent GMM estimation of equation (A.7). Given the estimates

α̂1,j and α̂2,j, log productivity of firm i is computed as

ln âi,j,t = ln yi,j,t − α̂1,j ln ki,j,t − α̂2,j lnni,j,t, (A.9)

where âi,j,t is the productivity for firm i in industry j.

Endogeneity and fixed effects. An alternative way to estimate the production function

avoiding endogeneity issues is to work with the following regression:

ln yi,j,t = vj + zi,j + wj,t + α1,j ln ki,j,t + α2,j lnni,j,t + ui,j,t. (A.10)

The parameter vj, zi,j, and wj,t indicate an industry dummy, a firm fixed effect, and an

industry-specific time dummy, respectively. The residual from the regression is denoted by

ui,j,t. Given our point estimate of α̂1,j and α̂2,j, I can use equation (A.9) to estimate âi,j,t.

Given this estimation of firms’ productivity, I obtain the alternative estimation of firms’

productivity.
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A.5 Summary Statistics across Industries

In Table A1, I report the summary statistics of cash-based profitability among firms in each

industry according to the Fama and French (1997) 30 (FF30) industry classifications. There

are comparatively large cross-industry variations in cash-based profitability. Specifically, the

standard deviation of cash-based profitability ranges from 0.07 for the Textiles industry to

0.32 for the Apparel industry. Therefore, to make sure our results are not driven by any

particular industry, I control for industry effects in our further analyses.

[Place Table A1 about here]

A.6 Transition Matrix

Whether firms’ cash-based profitability is persistent or not is important for our analysis of

the profitability-return relation. To examine such persistence, I present the transition across

quintiles over time. I present this analysis in Table A2. The left panel of Panel A2 shows

the transition of firms’ cash-based profitability from quarter t to quarter t+1, while the

right panel shows the transition of firms’ cash-based profitability from quarter t to quarter

t+5. For firms in the top or bottom quintile of the distribution of cash-based profitability, the

probability of staying in the same quintile in the next quarter (five quarters later) is above 65%

(44%). The persistent cash-based profitability is intuitive because firms cannot easily adjust

their information precision about their productivity. More importantly, such persistence

has important asset pricing implications: if there is any profitability-return relation, then it

should be attributed to long-lasting fundamental issues rather than transitory effects such as

overreaction (underreaction) or mispricing.

[Place Table A2 about here]

A.7 Investment and Tobin’s q: Cumulant Estimator

In our model, marginal q is identical to average q. However, empirical evidence documented in

the literature suggests that average q is a poor proxy for marginal q due to several reasons.

One of these reasons is measurement error in the firms’s capital stock. As the result, I

empirically account for measurement error following Erickson and Whited (2000, 2002, 2012).

The panel regression results are robust when I implement the estimators in . The results

are reported in Table A3. Notably, the correlation between investment and Tobin’s q are

increasing from the low to high portfolio sorted on cash-based profitability.
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[Place Table A3 about here]

Table A1: Cash-based Profitability across Fama-French 30 Industries

This table reports summary statistics of the industry-year observations of non-missing cash-based profitability
across industries, including the pooled mean (Mean), standard deviation (Std), 5th percentile (P5), 25th
percentile (P25), median (P50), 75th percentile (P75), and 95th percentile (P95). Obs denotes the average
number of firms with non-missing cash-based profitability in each industry. Industries are based on Fama-
French 30 industry classifications (FF30), excluding financial and utility industries. The sample period is
1979-2017.

FF30 Name Obs Mean Std P5 P25 Median P75 P95

1 Food 3,613 -0.03 0.11 -0.18 -0.04 0.00 0.02 0.06
2 Liquor 492 -0.01 0.07 -0.14 -0.03 0.00 0.02 0.06
3 Tobacco 148 -0.03 0.15 -0.28 -0.04 0.02 0.04 0.10
4 Recreation 3,444 -0.04 0.27 -0.21 -0.07 -0.01 0.02 0.07
5 Printing 2,183 -0.01 0.08 -0.16 -0.03 0.01 0.03 0.07
6 Consumer Goods 3,102 -0.03 0.11 -0.18 -0.04 -0.01 0.02 0.07
7 Apparel 2,102 -0.06 0.32 -0.24 -0.09 -0.03 0.01 0.08
8 Healthcare 15,278 -0.03 0.21 -0.19 -0.06 -0.01 0.02 0.07
9 Chemicals 3,047 -0.01 0.09 -0.15 -0.03 0.01 0.03 0.06
10 Textiles 1,061 -0.02 0.07 -0.14 -0.03 0.00 0.02 0.05
11 Construction 5,375 -0.03 0.12 -0.16 -0.04 -0.01 0.02 0.05
12 Steel 2,230 -0.01 0.08 -0.10 -0.02 0.00 0.02 0.05
13 Machinery 6,096 -0.03 0.16 -0.16 -0.04 0.00 0.02 0.05
14 Electrical 4,355 -0.03 0.19 -0.19 -0.05 -0.01 0.02 0.07
15 Automobiles 2,257 -0.02 0.11 -0.16 -0.03 0.00 0.02 0.06
16 Carry 1,091 -0.02 0.11 -0.17 -0.03 0.00 0.02 0.05
17 Mines 1,585 -0.04 0.18 -0.19 -0.07 -0.02 0.01 0.06
18 Coal 278 0.00 0.05 -0.09 -0.02 0.01 0.02 0.04
19 Oil 6,954 -0.02 0.26 -0.14 -0.03 0.00 0.03 0.06
21 Communication 3,617 -0.02 0.15 -0.16 -0.03 0.01 0.03 0.06
22 Service 19,595 -0.03 0.18 -0.19 -0.05 -0.01 0.03 0.08
23 Business Equipment 17,938 -0.02 0.12 -0.16 -0.04 0.00 0.03 0.08
24 Business Supplies 2,431 0.00 0.08 -0.11 -0.01 0.01 0.03 0.06
25 Transportation 3,242 0.00 0.12 -0.10 -0.01 0.01 0.03 0.06
26 Wholesale 7,028 -0.05 0.29 -0.24 -0.07 -0.02 0.01 0.05
27 Retail 8,456 -0.03 0.22 -0.16 -0.05 -0.01 0.02 0.07
28 Meals 3,462 0.00 0.11 -0.10 -0.01 0.02 0.03 0.06
30 Other 896 -0.07 0.84 -0.28 -0.08 -0.02 0.02 0.09
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Table A2: Transition Matrix: Persistence of Cash-based Profitability

This table presents transition frequency (%) across cash-based profitability quintiles from quarter t to t+1
in the left panel (column 1 to column 6) and from quarter t to t+5 in the right panel (column 7 to column
12). The cash-based profitability quintiles in each quarter are sorted in the same way as Tables ?? and 11.
The sample period is 1979-2017.

Panal A: One-Quarter Panal B: Five-Quarter

L(t+1) 2(t+1) 3(t+1) 4(t+1) H(t+1) L(t+5) 2(t+5) 3(t+5) 4(t+5) H(t+5)

L(t) 65.52 19.28 6.81 4.55 4.84 42.25 21.07 13.77 10.87 12.04
2(t) 17.74 48.46 22.22 7.61 3.82 17.28 33.93 24.83 15.24 8.71
3(t) 6.63 21.81 44.99 21.13 5.43 8.93 25.25 31.68 23.31 10.84
4(t) 4.52 8.48 21.17 47.89 17.94 7.03 15.07 25.38 32.56 19.96
H(t) 4.39 4.70 6.87 19.48 64.56 7.50 9.73 13.69 24.98 44.10
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Table A3: Investment and q Regressions: Cumulant Estimator

This table reports the results of investment regression using cumulant estimator among quintile portfolios
sorted on a firm’s cash-based profitability. All estimates are based on the following regression:

Ii,n,t
Ki,n,t−1

= β0,t + β0,i + βq,nqi,n,t + Controlsi,n,t + εi,n,t, for firms in portfolio n

in which Controlsi,n,t are control variables for firms’ fundamentals, including size, book-to-market ratio,
investment rate, and cash-based profitability. All independent variables are normalized to a zero mean and
a one standard deviation after winsorization at the 1st and 99th percentiles to reduce the impact of outliers.
t-statistics based on standard errors that are clustered at the firm level are reported. The sample period is
from 1979 to 2017 at quarterly frequency.

L 2 3 4 H

Tobin’s q -0.12 -0.19 0.01 0.03 0.80
[t] -5.45 -2.36 0.34 1.86 2.41
Log ME 0.03 -0.01 -0.04 -0.05 -0.08
[t] 5.91 -2.27 -12.70 -17.6 -6.75
Log B/M -0.15 -0.22 -0.08 -0.05 0.49
[t] -8.53 -4.00 -4.24 -3.04 2.15
COP/AT -0.21 -0.10 -0.00 0.03 0.08
[t] -23.87 -9.23 -0.23 8.74 2.03

Observations 63,874 66,445 69,705 69,495 65,604
ρ2 0.01 0.04 0.06 0.09 0.12
τ2 0.68 0.35 0.41 0.60 0.62
J-Test 117.58 18.10 82.28 145.56 5.98
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B Mathematical Details of the Model

B.1 Proof of Proposition 1

This proposition is a simple application of the Kalman-Bucy filter. The observable variables

are the short-run productivity dynamics in equation (4) and the signal process in equation

(9). Given that µt is unobservable, I specifically rewrite the dynamics of observable processes

as

dSt = (A0 + A1µt)dt+ B1dZ
µ
t + B2dZt, (B.1)

where

A0 =

(
−ρx

0

)
, A1 =

(
ρx

0

)
, B1 =

(
0

1

)
, B2 =

(
σx 0

0 1√
Φi

)
, (B.2)

and of the unobservable variable µt as

dµt = [a0 + a1µt]dt+ b1dZ
µ
t + b2dZt, (B.3)

where

a0 = ρµµ̄, a1 = −ρµ, b1 = σµ, b′2 =
(

0 0
)
. (B.4)

For the brevity of notation, I temporarily ignore the subscript i. The posterior mean and

the posterior variance evolve according to

dµ̂(a0 + a1µ̂)dt+ [(b ◦B) + ζA′1](B ◦B)−1 × [dSt − (A0 + A1µ̂)dt], (B.5)

dζ

dt
= 2a1ζ + (b ◦ b)− [(b ◦B) + ζA′1](B ◦B)−1[(b ◦B) + ζA′1]′, (B.6)

where

(b ◦ b) = b1b
′
1 + b2b

′
2 = σ2

µ, (B.7)

(B ◦B) = B1B
′
1 + B2B

′
2 =

(
σ2
x 0

0 Φ+1
Φ

)
, (B.8)

(b ◦B) = b1B
′
1 + b2B

′
2 =

(
0 σµ

)
, (B.9)

[
(b ◦B) + ζA′1

]
(B ◦B)−1 =

(
λζ
σ2
x

σµΦ

1+Φ

)
. (B.10)
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Therefore, I obtain the posterior mean

dµ̂it = ρµ(µ̄− µ̂it)dt+
(
λζit
σ2
x

σµΦi
1+Φi

)

dxt − ρx(µ̂it − xt)dt√

1+Φi
Φi

dẐs
t




= ρµ(µ̄− µ̂it)dt+
(
λζit
σ2
x

σµΦi
1+Φi

)

σxdZ

x
t + ρx(µt − µ̂it)dt√

1+Φi
Φi

dẐs
t




= ρµ(µ̄− µ̂it)dt+
(ρxζ it
σx

)
dẐx

it + σµ

√
Φi

1 + Φi

dẐs
t , (B.11)

where

dẐx
t = dZx

t +
(ρx
σx

)
(µt − µ̂it)dt. (B.12)

The signal process can be rewritten as

dsit = dZµ
t +

1√
Φi

dZs
t =

√
1 + Φi

Φi

dẐs
t , (B.13)

where Ẑs
t is a standard Brownian motion orthogonal to Ẑx

t and has heterogeneous loadings
1+Φi

Φi
across firms.

According to equation (B.6), the dynamics of the posterior variance is summarized by

the Riccati differential equation as follows:

dζ it
dt

=
σ2
µ

1 + Φi

− 2ρµζ it −
(ρxζ it
σx

)2

. (B.14)

The stationary solution to the learning problem is available when I impose the assumption

that the posterior variance has reached a steady state as time elapsed. Such the assumption

is common in the literature, according to Scheinkman and Xiong (2003) and Andrei, Mann,

and Moyen (2019), and fits well in the infinite horizon problem in my model economy. The

steady-state value for ζ it is denoted as ζ i by imposing the Riccati differential equation in

equation (B.14) equal to zero:

σ2
µ

1 + Φi

− 2ρµζ i −
(ρxζ i
σx

)2

= 0. (B.15)

This yields a quadratic equation, and I take the only one positive root as the stationary
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posterior variance:

ζ i =
1

2
(
ρx
σx

)2

[
− 2ρx +

√
4ρ2

µ + 4
(ρx
σx

)2( σ2
µ

1 + Φi

)]

=
(σx
ρx

)2
[√

ρ2
µ +

( 1

1 + Φi

)(ρxσµ
σx

)2

− ρµ

]
. (B.16)

B.2 Proof of Corollary 1

Plugging the stationary posterior variance ζ i into equation (B.11) and replacing ζ it yields

dµ̂it = ρµ(µ̄− µ̂it)dt+
(σx
ρx

)[√
ρ2
µ +

( 1

1 + Φi

)(ρxσµ
σx

)2

−ρµ

]
dẐx

it+σµ

√
Φi

1 + Φi

dẐs
t , (B.17)

and the instantaneous variance of the posterior mean µ̂it is

V ar[dµ̂it] =
(σx
ρx

)2
[√

ρ2
µ +

( 1

1 + Φi

)(ρxσµ
σx

)2

− ρµ

]2

+ σ2
µ

( Φi

1 + Φi

)

= σ2
µ −

(2ρµσ
2
x

ρ2
x

)[√
ρ2
µ +

( 1

1 + Φi

)(ρxσµ
σx

)2

− ρµ

]

= σ2
µ − 2ρµζ i (B.18)

Trivially, the variance is increasing in Φi by taking the partial derivative as follows:

∂V ar[dµ̂it]

∂Φi

= −2ρµ
∂ζ i
∂Φi

=
ρµσxσ

2
µ

(1 + Φi)2

√
ρ2
µσ

2
x +

ρ2xσ
2
µ

1+Φi

> 0. (B.19)

B.3 Proof of Lemma 1

According to equation (3), firm i’s realized marginal product of capital (MPK) denotes:

MPKi =
∂Yi
∂Ki

= eait+xt . (B.20)

Therefore, firm i’s the logarithm of MPK is given by

log MPKi = ait + xt, (B.21)
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and the variance captures the dispersion of the logarithm of MPK on the cross-section:

Var
[

log(MPKi)
]

= Var
[
ait
]

+ Var
[
xt
]
. (B.22)

To compute the unconditional variance, I discretize the dynamics with respect to the firm-

specific, short-run, and filtered long-run productivity:

ait+∆t = e−ρa∆tait + σa

√
1− e−2ρa∆t

2ρa
εait+∆t, (B.23)

xt+∆t = e−ρx∆txt + µ̂it(1− e−ρx∆t) + σx

√
1− e−2ρx∆t

2ρx
εxt+∆t, (B.24)

µ̂it+∆t = e−ρµ∆tµ̂it + µ̄(1− e−ρµ∆t) + σµ

√
1− e−2ρµ∆t

2ρµ

(
Ωiε

x
it+∆t + σµ

√
Φi

1 + Φi

εµt+∆t

)
, (B.25)

where εait, ε
x
t , and εµt are i.i.d. standard normal variables5, and Ωi is given by

Ωi =
(σx
ρx

)[√
ρ2
µ +

( 1

1 + Φi

)(ρxσµ
σx

)2

− ρµ

]
. (B.26)

If ∆t equal to 1, then the above discretized mean-reverting dynamics exactly follow AR(1)

processes. A stationary AR(1) process implies the mean and variance are time-invariant.

Therefore, the variance of the firm-specific productivity is

Var[ait+1] = e−2ρaVar[ait] + σ2
a

(1− e−2ρa

2ρa

)
Var[εait+1]. (B.27)

Given that Var[ait+1] equals to Var[ait], rearrangement the above equation yields

Var[ait] =
σ2
a

2ρa
. (B.28)

Since the variance of the short-run productivity depends on that of the filtered long-run

productivity, I first compute the variance of the filtered long-run productivity as follows:

Var[µ̂it+1] = e−2ρµVar[µ̂it] + σ2
µ

(1− e−2ρµ

2ρµ

)
Var

[
Ωiε

x
t+1 + σµ

√
Φi

1 + Φi

εµt+1

]
, (B.29)

5εait, ε
x
t , ε

µ
t
iid∼ N(0, 1)
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where Var

[
Ωiε

x
t+1 + σµ

√
Φi

1+Φi
εµt+1

]
is similar with the result in equation (B.18). As a result,

I obtain

Var[µ̂it] =
( 1

2ρµ

)
(σ2

µ − 2ρµζ i)

=
( σ2

µ

2ρµ

)
− ζ i. (B.30)

The unconditional variance of xt is available when t and ∆t go to infinity:

Var[xt+∆t] = e−2ρx∆tVar[xt] + (1− e−ρx∆t)2Var[µ̂it]

+2(1− e−ρx∆t)σx

√
1− e−2ρx∆t

2ρx
Cov(µ̂it, ε

x
t+∆t)

+σ2
x

(1− e−2ρx∆t

2ρx

)
Var[εxt+∆t]. (B.31)

Var[xt] = lim
∆t→∞

(1− e−ρx∆t)2

(1− e−2ρx∆t)
Var[µ̂it] + lim

∆t→∞

( σ2
x

1− e−2ρx∆t

)(1− e−2ρx∆t

2ρx

)

+2σx lim
∆t→∞

( 1− e−ρx∆t

1− e−2ρx∆t

)(√1− e−2ρx∆t

2ρx

)
σµ

(√1− e−2ρµ∆t

2ρµ

)
Ωi

=
σ2
µ

2ρµ
− ζ i +

σ2
x

2ρx
+

σµρxζ i√
4ρxρµ

=
σ2
µ

2ρµ
+

σ2
x

2ρx
+
(
− 1 + σµ

√
ρx
ρµ

)
ζ i, (B.32)

where I replace Ωi in the second equality according to equation (B.16) and (B.42):

Ωi =
(ρx
σx

)
ζ i. (B.33)

The partial derivative of Var[xt] with respect to Φi is:

∂

∂Φi

Var[xt] =
(
− 1 + σµ

√
ρx
ρµ

) ∂ζ i
∂Φi

< 0, (B.34)

when the sufficient condition is held:

σ2
µρx > ρµ. (B.35)
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Finally, I can then compute:

∂

∂Φi

Var
[

log(MPKi)
]

=
∂

∂Φi

Var[xt] =
(
− 1 + σµ

√
ρx
ρµ

) ∂ζ i
∂Φi

< 0. (B.36)

B.4 Proof of Lemma 2

Aggregating filtered short-run productivity shocks across all firms yields

dẐx
t =

∫
dẐx

itdi

= dZx
t +

(ρx
σx

)
(µt − µ̂t)dt. (B.37)

An application of the law of large numbers implies that Φi converges to its cross-sectional

mean Φ. The aggregate signal shocks at time t is given by

dst =

∫
dsitdi =

∫ (
dZµ +

1√
Φi

dZs
t

)
di

= dZµ
t +

∫
1√
Φi

dZs
t di

= dZµ
t +

∫ ( 1√
Φi

)
di dZs

t

→ dZµ
t + Ei

( 1√
Φi

)
dZs

t

= dZµ
t +

1√
Φ
dZs

t

=
(1 + Φ√

Φ

)
dẐs

t , (B.38)

where the integration and differentiation operator, without loss of generality, are interchange-

able, and Ei[·] =
∫
di is the operator of cross-sectional expectation.6

B.5 Proof of Proposition 2

Firm i’s optimization problem is to maximize its expected summation of future dividends

(i.e., cash-flows) discounted by the SDF, after subtracting its investment and adjustment cost,

subject to the law of motion of capital accumulation in equation (7) and the adjustment cost

6The exemplary of interchange operators is as follows:

dωt =

∫ (
dωit

)
di = d

(∫
ωitdi

)
,

where dωt is the aggregation of the dynamics dωit.
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in equation (8). Consider the risk-neutral probability measure Q, implicitly defined given

my specification for the SDF. Under this measure, the firm’s valuation equals:

V (ait, xt, µ̂it, Kit) = Max
Is

Et

[∫ ∞

t

πs
πt

(Yis − Iis −Ψ(Iis, Kis))ds

]

= Max
Is

E
Q
t

[∫ ∞

t

e−rf (s−t)(Yis − Iis −Ψ(Iis, Kis))ds

]
, (B.39)

where EQt denotes expectations under the risk-neutral measure Q, and

dQ
dP = exp

(
− λxẐx

t − λµẐµ
t −

1

2
λ2
xt−

1

2
λ2
µt
)
, (B.40)

where P denotes the physical probability measure. The Hamilton–Jacobi–Bellman (HJB)

equation associated with the above optimization problem is

rfVit = Max
Iit

eait+xtK − Iit −Ψ(Iit, Kit) +D[Vit], (B.41)

where D is the differential operator. I guess that firm i value can be written as

V (ait, xt, µ̂it, Kit) = q(ait, xt, µ̂it)Kit. (B.42)

The first order condition from the Hamilton-Jacobian-Bellman equation (B.39) yields the

level of optimal investment:

0 = −1− χ
( Iit
Kit

)
+ q(ait, xt, µ̂it)

Iit
Kit

= − 1

χ
+

1

χ
q(ait, xt, µ̂it). (B.43)

The second equality of the above equation implies a one-to-one mapping relation between

the optimal investment rate and Tobin’s q.

For the notation brevity, I temporarily suppress subscript. Using conjectured value func-

tion equation (B.42) and the optimal investment rate in equation (B.43), I obtain the follow-

ing partial differential equation for q according to the HJB equation (B.41):

0 = ea+x −
(
− 1

χ
+

1

χ
q
)
− χ

2

(
− 1

χ
+

1

χ
q
)2

+ q
[
− 1

χ
+

1

χ
q − (rf + δ)

]

qt − qaρaa+ qxρx(µ̂− x) + qµ̂ρµ(µ̄− µ̂)

+
1

2
qaaσ

2
a +

1

2
qxxσ

2
x +

1

2
qµ̂µ̂(σ2

µ − 2ρµζ) + qxµ̂σx

(ρxζ
σx

)
. (B.44)
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Following Ai (2010), I conjecture that q takes the exponential form:

q(a, x, µ̂, t) ≡ eηaa+ηxx+ηµ̂µ̂+η(t), (B.45)

where qa(a, x, µ̂, t) = ηaq(a, x, µ̂, t), qx(a, x, µ̂, t) = ηxq(a, x, µ̂, t), qµ̂(a, x, µ̂, t) = ηµ̂q(a, x, µ̂, t),

and qt(a, x, µ̂, t) = η′(t)q(a, x, µ̂, t). Substituting these terms into equation (B.44) and divid-

ing by qa(a, x, µ̂, t), I would get

0 =
[
ea+xq−1 +

1

2χ
q−1 + η′(t)

]
+
[
1− 2

χ
− (rf + δ)

]
+

1

2χ
q

−ηaρaa+ ηxρx(µ̂− x) + ηµ̂ρµ(µ̄− µ̂)

+
1

2
η2
aσ

2
a +

1

2
η2
xσ

2
x +

1

2
η2
µ̂(σ2

µ − 2ρµζ) + ηxηµ̂ρxζ. (B.46)

Using ec − 1 ≈ c to approximate and simplify, the above HJB equation becomes

0 =
[
1 + (1− ηa)a+ (1− ηx)x+ ηµ̂µ̂− η(t)

]
+

1

2χ

[
1− ηaa− ηxx− ηµ̂µ̂− η(t)

]

+η′(t) +
[
1− 2

χ
− (rf + δ)

]
+

1

2χ

[
1 + ηaa+ ηxx+ ηµ̂µ̂+ η(t)

]

−ηaρaa+ ηxρx(µ̂− x) + ηµ̂ρµ(µ̄− µ̂)

+
1

2
η2
aσ

2
a +

1

2
η2
xσ

2
x +

1

2
η2
µ̂(σ2

µ − 2ρµζ) + ηxηµ̂ρxζ

=
[
2− 1

χ
− (rf + δ)

]
− η(t) + η′(t) + ηµ̂ρµµ̄+

1

2
η2
aσ

2
a +

1

2
η2
xσ

2
x +

1

2
η2
µ̂(σ2

µ − 2ρµζ) + ηxηµ̂ρxζ

+(1− ηa − ηaρa)a+ (1− ηx − ηxρx)x+ (1− ηµ̂ + ηxρx − ηµ̂ρµ)µ̂. (B.47)

Matching the coefficients with respect to a, x, µ̂, and t yields:

ηa =
1

1 + ρa
, (B.48)

ηx =
1

1 + ρx
, (B.49)

ηµ̂ =
1 + 2ρx

(1 + ρx)(1 + ρµ)
. (B.50)

Given the initial condition η(0) = 0, I determine the functional form of η(t) by the solving

an ordinary differential equation (ODE) as follows:

η′(t)− η(t) + η̄ = 0, (B.51)
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where η̄ is a time-unvarying constant and given by

η̄ = 2− 1

χ
− (rf + δ) + ηµ̂ρµµ̄+

1

2
η2
aσ

2
a +

1

2
η2
xσ

2
x

+
1

2
η2
µ̂(σ2

µ − 2ρµζ) + ηxηµ̂ρxζ, (B.52)

and the initial condition is η(0) = 0. Note that in order to solve for asset prices, I do not

have to pin down the functional form of η(t). Nevertheless, I need the functional form of η(t)

to compute market equities and book-to-market ratios in the economy.

η(t) follows a linear first order ODE and can be solved using the integrating factor method:

η(t) = η̄(1− et) (B.53)

B.6 Proof of Proposition 3

I define firm i’s realized stock returns by using Ito’s Lemma on firm i’s stock value in equation

(19). The firm’s realized returns are the summation of dividend yields and capital gains in

the first and second term of the first equality at the left hand side in the following equation:

Ditdt+ dVit
Vit

= Et

[
Ditdt+ dVit

Vit

]
+
D[q(ait, xt, µ̂it)Kit]

q(ait, xt, µ̂it)Kit

= Et

[
Ditdt+ dVit

Vit

]
+ βa,itdZ

a
it + βx,itdẐ

x
it + βµ,itdẐ

µ
it, (B.54)

where

βa,it = ηaσa, (B.55)

βx,it = ηxσx + ηµ̂

(ρxζ i
σx

)
, (B.56)

βµ,it = ηµ̂σµ

√
Φi

1 + Φi

. (B.57)

B.7 Proof of Corollary 2

According to equation (21), firm i’s risk premium is summarized as two components with

respect to the short- and signal shocks. The heterogeneity in expected returns depends on

heterogeneity in information precision among firms. Therefore, I present the partial derivative
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of firm’s risk premium with respect to its information precision as follows:

∂

∂Φi

(
βx,itλx + βµ,itλµ

)
=
∂βx,it
∂Φi

λx +
∂βµ,it
∂Φi

λµ, (B.58)

where λx and λµ are constant according to equation (16). The comparative static analysis is

going to focus on
∂βx,it
∂Φi

and
∂βµ,it
∂Φi

, respectively. For the convenience of the following analysis,

I apply the log-linear approximation of equation (B.16) and obtain,

ζ i =
(σx
ρx

)2
[√

ρ2
µ +

( 1

1 + Φi

)(ρxσµ
σx

)2

− ρµ

]

= ρµ

(σx
ρx

)2
[√

1 +
( 1

1 + Φi

)(ρxσµ
ρµσx

)2

− 1

]

≈ −1

2

(σ2
µ

ρµ

)( 1

1 + Φi

)
. (B.59)

As a result, plugging equation (B.56) and (B.59) into the first component in the right hand

side of equation (B.58) yields

∂βx,it
∂Φi

λx = −1

2

(ηµ̂ρx
σx

)(σ2
µ

ρµ

)( 1

1 + Φi

)2

λx. (B.60)

To analysis the sensitivity of risk premium attributing to signal shocks, I apply the similar

trick of the log-linear approximation and obtain

√
Φi

1 + Φi

≈ 1− 1

2

( Φi

1 + Φi

)
, (B.61)

and
∂

∂Φi

√
Φi

1 + Φi

≈ 1

2

( 1

1 + Φi

)2

. (B.62)

The second component in the right hand side of equation (B.58) can be rewritten as

∂βµ,it
∂Φi

λµ =
1

2
ηµ̂σµ

( 1

1 + Φi

)2

λµ. (B.63)
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Finally, the sensitivity of firm i’s risk premium to its information precision Φi is characterized

as follows:

∂

∂Φi

(
βx,itλx + βµ,itλµ

)
=

∂βx,it
∂Φi

λx +
∂βµ,it
∂Φi

λµ

= −1

2

(ηµ̂ρx
σx

)(σ2
µ

ρµ

)( 1

1 + Φi

)2

λx +
1

2
ηµ̂σµ

( 1

1 + Φi

)2

λµ

=
1

2
ηµ̂σµ

[
−
(ρxσµ
ρµσx

)
λx + λµ

]
> 0, (B.64)

where the positive partial derivative is positive in the above equation when the sufficient

condition is held:

−
(ρxσµ
ρµσx

)
λx + λµ > 0. (B.65)

Alternatively, I can numerically verify that a firm’s expected return is increasing in its

information precision Φi. Figure A1 illustrates the equilibrium expected return as a function

of Φi. As information precision increases (as I move along the x-axis), a firm are better to

update its belief about unobservable long-run productivity, and, its cash flows become more

procyclical. Therefore, its stock is riskier to earn a higher expected return.

[Place Figure A1 about here]

B.8 Proof of Proposition 4

The long-short portfolio return in equation (24) is available when I substitute equation (20)

with respect to high versus low information precision firm into the covariance term in equation

(21), and then take a difference of expected returns.

B.9 Proof of Proposition 5

According to equation (28), I calculate its Macaulay duration recursively as follows:

M(ait, xt, µ̂it)q(ait, xt, µ̂it) = Et

[∫ ∞

t

s
πs
πt

Ψisds

]

= E
Q
t

[∫ ∞

t

s erf (s−t)Ψisds

]
,

(B.66)
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in which E
Q
t denotes expectations under the risk-neutral measure Q, and P denotes the

physical probability measure. To derive Macaulay duration, I consider a small fraction of

time ∆t such that:

Mitqit = Et

[∫ t+∆t

t

s
πs
πt

Ψisds

]
+ Et

[∫ ∞

t+∆t

s
πs
πt

Ψisds

]

= E
Q
t

[∫ ∞

t

∆t erf (s−t)Ψisds

]
+ E

Q
t

[∫ ∞

t

(s−∆t)erf (s−t)Ψisds

]

= E
Q
t

[∫ ∞

t

erf (s−t)Ψisds

]
∆t+ E

Q
t

[
E
Q
t+∆t

[∫ ∞

t

(s−∆t)erf (s−t)Ψisds

]]

= qit∆t+ E
Q
t

[
e−rf∆tMit+∆tqit+∆t

]
(B.67)

For the notation brevity, I temporarily suppress subscript and take the limit as ∆t→ 0. Ap-

plying Ito’s lemma to expand the multiplication of M and q, the Hamilton–Jacobian–Bellman

(HJB) equation associated with the above equation denotes:

rfMqdt = qdt+D[Mq]

rfdt =
1

M
dt+ E

Q
t

[
dM

M
+
dq

q
+
dM

M

dq

q

]
. (B.68)

As is shown in Section B.5, I conjecture that M takes the exponential form:

M = eφa+φxx+φµ̂µ̂+φ(t), (B.69)

in which Ma = φaM , Mx = φxM , Mµ̂ = φµ̂M , and Mt = φ′(t)M . The above HJB equation

is simplified when I use the first order to approximation for 1/M and substitute these terms

and the functional form of q in equation (B.45) into equation (B.68):

rf = 1− φaa− φxx− φµ̂µ̂− φaρaa+ φxρx(µ̂− x) + φµ̂ρµ(µ̄− µ̂)

+
1

2
φ2
aσ

2
a +

1

2
φ2
xσ

2
x +

1

2
φ2
µ̂(σ2

µ − 2ρµζ) + φxφµ̂σx

(ρxζ
σx

)

−ηaρaa+ ηxρx(µ̂− x) + ηµ̂ρµ(µ̄− µ̂) +
1

2
η2
aσ

2
a +

1

2
η2
xσ

2
x +

1

2
η2
µ̂(σ2

µ − 2ρµζ)

+ηxηµ̂σx

(ρxζ
σx

)
+ φaηaσ

2
a + φxηµ̂σx

(ρxζ
σx

)
+ φµ̂ηµ̂(σ2

µ − 2ρµζ) + φµ̂ηxσx

(ρxζ
σx

)
.

(B.70)
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Matching the coefficients with respect to a, x, µ̂, and t determines:

φa =
−ηaρa
1 + ρa

< 0, (B.71)

φx =
−ηxρx
1 + ρx

< 0, (B.72)

φµ̂ =
φxρx − ηxρx − ηµ̂ρµ

1 + ρµ

=
1

1 + ρµ

[
− 1 + 2ρx

1 + ρµ
ρxηx −

1 + 2ρx
(1 + ρx)(1 + ρµ)

]
< 0, (B.73)

Since ηx is strictly positive according to equation (B.49), I can show that φa, φx, and φµ̂ are

strictly negative.

Given the initial condition φ(0) = 0, I determine the functional form of φ(t) by the solving

an ordinary differential equation (ODE) as follows:

φ′(t)− φ(t) + φ̄ = 0, (B.74)

where φ̄ is a time-unvarying constant and characterized as follows:

φ̄ = 1− rf + φµ̂ρµµ̄+
1

2
φ2
aσ

2
a +

1

2
φ2
xσ

2
x +

1

2
φ2
µ̂(σ2

µ − 2ρµζ) + φxφµ̂σx

(ρxζ
σx

)

+ηµ̂ρµµ̄+
1

2
η2
aσ

2
a +

1

2
η2
xσ

2
x +

1

2
η2
µ̂(σ2

µ − 2ρµζ) + ηxηµ̂σx

(ρxζ
σx

)
+ φaηaσ

2
a + φxηµ̂σx

(ρxζ
σx

)

+φµ̂ηµ̂(σ2
µ − 2ρµζ) + φµ̂ηxσx

(ρxζ
σx

)
, (B.75)

and the initial condition is φ(0) = 0. Note that in order to solve for asset prices, I do not

have to pin down the functional form of φ(t). Nevertheless, I need the functional form of

φ(t) to compute market equities and book-to-market ratios in the economy.

φ(t) follows a linear first order ODE and can be solved using the integrating factor method:

φ(t) = φ̄(1− et) (B.76)
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Figure A1: Expected Return and Information Precision

This figure plots the expected return as a function of information precision Φi. Other parameter values are
set according to Table 6.
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